Antena Brasileira de Matemática

Accueil
Qui sommes nous?
Actions
Actualité
Production
Antennes
Partenaires
Liens
Contact

america

Bandeira do brasil

america
frança
hovardabetroad

Antena Brasileira de Matemática

Menu

america
frança
  • Accueil
  • Qui sommes nous?
  • Actions
  • Actualité
  • Production
  • Antennes
  • Partenaires
  • Liens
  • Contact

Facebook
Youtube
antena colina
  • Seminaire de Combinatoire
  • Workshops
  • Mini-cours
  • Curta-ciência
  • Interventions
voltar

Guilherme da Fonseca

Data: 14/05/2018

SC-Guilherme1

SC-Guilherme10

SC-Guilherme11

SC-Guilherme2

SC-Guilherme3

SC-Guilherme4

SC-Guilherme6

SC-Guilherme7

SC-Guilherme8

SC-Guilherme9

Previous Next

Título: On the Combinatorial Complexity of Approximating Polytopes

Palestrante: Guilherme D. da Fonseca, Université Clermont Auvergne
Data: 14 de maio de 2018, 13 h.
Local: Sala 407, Bloco H, Campus Gragoatá, UFF.

 

Resumo: 

Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body K of diameter diam(K) is given in Euclidean d-dimensional space, where d is a constant. Given an error parameter ε > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from K is at most ε diam(K). By combinatorial complexity, we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/ε^(d-1)/2) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is Õ(1/ε^(d-1)/2), where Õ conceals a polylogarithmic factor in 1/ε. This is a significant improvement upon the best known bound, which is roughly O(1/ε^d-2). Our result is based on a novel combination of both new and old ideas. First, we employ Macbeth regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of Bárány and Larman's economical cap covering, which may be of independent interest. Finally, we use a deterministic variation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.

 Obs: Sunil Arya, Guilherme D. da Fonseca, and David M. Mount; SoCG 2016, 11:1-15, 2016.

 Confira aqui a apresentação

 

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler