
The Combinatorial Complexity
of Approximating Polytopes

Sunil Arya
Hong Kong University of Science and Technology

Guilherme D. da Fonseca
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Polytope Approximation

Problem description:

Input: convex body K in d-dimensional space and
parameter ε

Output: succinct polytope P which
ε-approximates K

Question: how succinct can P be?

ε-approximate: Hausdorff distance ε · diam(K )

Succinct: Low combinatorial complexity
(to be defined)

Assume w.l.o.g. that diam(K ) = 1

Dimension d is a constant (2d/ε = O(1/ε))

K

Pε



Uniform vs. Nonuniform Bounds

Nonuniform bounds:

Hold for ε ≤ ε0, where ε0 depends on the input K

Example: Gruber [Gru93] bounds the complexity n using the
Gaussian curvature κ of the input

n = (1/ε)(d−1)/2
∫
∂K

√
κ(x) dx

Uniform bounds: (our case)

Hold for ε ≤ ε0, where ε0 is a constant

Example: Dudley [Dud74] and Bronshteyn and Ivanov [BI74] bound
the maximum number of facets/vertices as a function of ε, d , and
the diameter of the input



Bronshteyn and Ivanov’s Approximation

K

1 Surround K by a sphere of radius 2

2 Distribute points on the sphere
with distance ∼

√
ε

3 Take the nearest neighbor on K for
each point

4 Make P the convex hull of the
points

Bronshteyn and Ivanov, 1974:

A convex body K of diameter 1 can be
ε-approximated by a polytope P with
O(1/ε(d−1)/2) vertices.
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Dudley’s Approximation

K

1 Surround K by a sphere of radius 2

2 Distribute points on the sphere
with distance ∼

√
ε

3 Take the nearest neighbor on K for
each point

4 Make P the intersection of
supporting halfspaces at each point

Dudley, 1974:

A convex body K of diameter 1 can be
ε-approximated by a polytope P with
O(1/ε(d−1)/2) facets.
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Combinatorial Complexity

Faces have different dimensions:
0-face: vertex
1-face: edge
...
(d − 1)-face: facet

Combinatorial complexity:
sum of number of k-faces k = 0, . . . , d − 1

Upper bound theorem

A polytope with n vertices (or facets) has combinatorial complexity
O(nbd/2c).



Approximation of Low Combinatorial Complexity

Lattice polytope

Bronshteyn and Ivanov:
optimal number of vertices O(1/ε(d−1)/2)

Dudley: same optimal number of facets

Upper bound theorem: their combinatorial
complexity is O(1/εd

2/4)
(Maybe it’s much better, but we don’t know
how to prove)

Combinatorial complexity

Best known bound: Roughly O(1/εd−2) using
lattice polytopes [And63]

Our bounda: Õ(1/ε(d−1)/2)

aÕ hides log(d−1)/2 1
ε



Caps

ε

K

H

ε-width cap C

Cap: intersection of K and a halfspace H

Width: measured perpendicular to H

A set S of points stabs all ε-width caps if
for every ε-width cap C we have C ∩ S 6= ∅

Approximation via Hitting Sets

If a point set S ⊂ K stabs all ε-width caps,
then conv(S) is an ε-approximation to K .



Caps

ε

conv(S)
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Cap: intersection of K and a halfspace H

Width: measured perpendicular to H

A set S of points stabs all ε-width caps if
for every ε-width cap C we have C ∩ S 6= ∅

Approximation via Hitting Sets
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Bounding Complexity via Witness-Collector

We identify two sets of regions:

W: witnesses
C: collectors, one per witness

that satisfy:

(1) Each witness contributes one point to S

(2) Any halfspace H either:

Deep: contains a witness, or
Shallow: H ∩ K is contained within a
collector

(3) Each collector contains O(1) points of S

Witness-Collector Complexity Bound [Devillers et al. 2013]

Given a set of witnesses and collectors satisfying the above properties,
the combinatorial complexity of the conv(S) is O(|C|).
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Macbeath Regions

K

x

M(x)

M ′(x)

Macbeath Regions [Macbeath 52]

Given a convex body K , x ∈ K , and λ > 0:

Mλ(x) = x + λ((K − x) ∩ (x − K ))

M(x) = M1(x): intersection of K and K
reflected around x

M ′(x) = M1/5(x)

Properties:

M(x) resembles the minimum volume cap
containing x

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆ M(y)
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Economical Cap Covering

Economical Cap Covering

Given:

K : convex body

ε: small positive parameter

There exists [ELR70, Bar07]:

Macbeath regions R1, . . . ,Rk

Caps C1, . . . ,Ck of width Θ(ε)

k = O(1/ε(d−1)/2) (new)

For every cap C , there is i :

Ri ⊆ C if width ≥ ε
C ⊆ Ci if width ≤ ε

K

εC
Ri

Ci

K



Cardinality Bound

√
ε

Proof strategy:

Prune Macbeath regions that are too
close to each other
(by increasing volume)

A constant fraction of the regions are
pruned

Project the centers of the regions onto
the Dudley ball (perpendicularly to the
corresponding cap)

Show that the pairwise distance in the
Dudley ball is at least

√
ε



Approximating with ECC

Economical Cap Covering

Given:

K : convex body

ε: small positive parameter

There exists [ELR70, Bar07]:

Macbeath regions R1, . . . ,Rk

Caps C1, . . . ,Ck of width Θ(ε)

k = O(1/ε(d−1)/2) (new)

For every cap C , there is i :

Ri ⊆ C if width ≥ ε
C ⊆ Ci if width ≤ ε

Procedure:

Create an ECC

Place a point inside each
Macbeath region

Compute the convex hull

Approximation:

Every ε-width cap is stabbed

Complexity:

O(1/ε(d−1)/2) vertices

Combinatorial complexity:
O(1/εd

2/4) by the upper bound
theorem



Better Bound on the Combinatorial Complexity

What if we use the Macbeath regions as witnesses and the caps as
collectors?

Ri

Ci

Does not work for the traditional
construction (for fixed width)

We need one additional property:
For all i , Ci intersects a constant
number of bodies Rj



Stratified Construction

K

Organize the Macbeath regions in
O(log 1

ε ) layers by volume

Larger volume Macbeath regions in
outer layers

Approximation error increases from ε
to O(ε log 1

ε ))

Scale ε accordingly: ε̂ = ε
log 1

ε

Number of regions grows to

O

((
1

ε̂

) d−1
2

)
= O

( log 1
ε

ε

) d−1
2


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Stratified Economical Cap Covering

Ri
Ci

K

Stratified ECC

Given:

K : convex body

ε: small positive parameter

There exists:

Convex bodies R1, . . . ,Rk

Regions C1, . . . ,Ck

k = Õ(1/ε(d−1)/2)

Every ε-width cap C contains
an Ri

For every cap C , either
Ri ⊆ C or C ⊆ Ci for some i

For all i , Ci intersects a
constant number of bodies Rj



Comparing Economical Cap Coverings

Economical Cap Covering

Given: K , ε

There exists:

Convex bodies R1, . . . ,Rk

Caps C1, . . . ,Ck of width Θ(ε)

k = O(1/ε(d−1)/2)

For every cap C , there is i :

Ri ⊆ C if width ≥ ε
C ⊆ Ci if width ≤ ε

Stratified ECC

Given: K , ε

There exists:

Convex bodies R1, . . . ,Rk

Non-convex regions C1, . . . ,Ck

k = Õ(1/ε(d−1)/2)

For every cap C , there is i :

Ri ⊆ C if width ≥ ε
C ⊆ Ci if no Rj ⊆ C

For all i , Ci intersects a
constant number of bodies Rj



Succinct Approximation

Procedure:

Create a stratified ECC

Place a point inside each Ri

Compute the convex hull

Approximation:

Every ε-width cap is stabbed

Complexity:

Õ(1/ε(d−1)/2) vertices

Combinatorial complexity:
Õ(1/ε(d−1)/2)
Why?



Counting the Faces

F

Ci

C

H

Ri are witnesses and Ci are
collectors

Charge each face F to a Ci and
show each Ci receives O(1) charges

H: supporting halfspace of F

C = K ∩ H contains no Ri

Some Ci contains C

Charge F to Ci

Ci intersects O(1) bodies Ri

→ Ci contains O(1) points
→ O(1) faces charge Ci



Conclusion and Open Problems

Our result:

First near-optimal bound on the combinatorial complexity of an
ε-approximating polytope in Rd :

O

( log 1
ε

ε

) d−1
2

 = Õ

((
1

ε

) d−1
2

)

Open problems:

How long does it take to actually build the approximation?

Can we analyze Dudley’s construction?

Can we get rid of the log factors?

Can we compete against the optimal combinatorial complexity for
the given K?
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Sculpture by Antony Gormley

Thank you!
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