Antena Brasileira de Matemática

Início
Sobre
Ações
Notícias
Produção
Antenas
Parceiros
Links
Contato

america

frança

america
frança
hovardabetroad

Antena Brasileira de Matemática

Menu

america
frança
  • Início
  • Sobre
  • Ações
  • Notícias
  • Produção
  • Antenas
  • Parceiros
  • Links
  • Contato

Facebook
Youtube
antena colina
  • Seminário de Combinatória
  • Workshops
  • Minicursos
  • Curta-ciência
  • Intervenções
voltar

Deise Lilian de Oliveira

Data: 28/07/2021

Deise-01

Deise-02

Deise-03

Previous Next

Título: Results on the Graceful Game and Range-Relaxed Graceful Game.

Palestrante: Deise Lilian de Oliveira, IFRJ/UFF.

Data: 28 de Julho de 2021, 16 h.
Sala: Google Meet.

Resumo: The range-relaxed graceful game is a maker-breaker game played in a simple graph $G$ where two players, Alice and Bob, alternately assign an unused label $f(v) \in \{0,\ldots,k\}$, $k \geq |E(G)|$, to an unlabeled vertex $v \in V(G)$. If both ends of an edge $vw \in E(G)$ are already labeled, then the label of the edge is defined as $|f(v)-f(w)|$.

Alice’s goal is to end up with a vertex labelling of $G$ where all edges of $G$ have distinct labels, and Bob’s goal is to prevent this from happening.
When it is required that $k = |E(G)|$, the game is called graceful game. The range-relaxed graceful game and the graceful game were proposed by Tuza in $2017$.
The author also posed a question about the least number of consecutive non-negative integer labels necessary for Alice to win the game on an arbitrary simple graph $G$ and also asked if Alice can win the range-relaxed graceful game on $G$ with the set of labels $\{0,...,k+1\}$ once it is known that she can win with the set $\{0,...,k\}$.
In this work, we investigate the graceful game in Cartesian and corona products of graphs, and determine that Bob has a winning strategy in all investigated families independently of who starts the game.
Additionally, we partially answer Tuza's questions presenting the first results in the range-relaxed graceful game and proving that Alice wins on any simple graph $G$ with order $n$, size $m$ and maximum degree $\Delta$, for any set of labels $\{0,\ldots,k\}$ with $k \geq (n-1) + 2\Delta\left(m-\Delta\right)+ \frac{\Delta\left(\Delta-1\right)}{2}$.

 Obs. This is a joint work with Atílio G. Luiz and Simone Dantas accepted in Eurocomb 2021.

 

 

 

 

 

 

 

 

 

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler