Antena Brasileira de Matemática

Accueil
Qui sommes nous?
Actions
Actualité
Production
Antennes
Partenaires
Liens
Contact

america

Bandeira do brasil

america
frança
hovardabetroad

Antena Brasileira de Matemática

Menu

america
frança
  • Accueil
  • Qui sommes nous?
  • Actions
  • Actualité
  • Production
  • Antennes
  • Partenaires
  • Liens
  • Contact

Facebook
Youtube
antena colina
  • Seminaire de Combinatoire
  • Workshops
  • Mini-cours
  • Curta-ciência
  • Interventions
voltar

Jose Alvarado

Data: 26/10/2016

Seminario Jose Alvorado-1

Seminario Jose Alvorado-2

Seminario Jose Alvorado-3

Seminario Jose Alvorado-5

jose-alvarado-2

Previous Next

jose-alvaradoTítulo: Sandwich Problems and Structural Properties of the Two Forbidden Four-vertex Subgraphs Classes
Palestrante: Jose Alvarado, UFF.
Data: 26 de outubro de 2016, 11h.
Local: Sala 409, Bloco H, IME, Campus Gragoatá, UFF.

 

Resumo: The \Pi Graph Sandwich Problem (GSP) introduced by Golumbic and Shamir in 1993, asks, for a pair of graphs G^1= (V, E^1), G^2 = (V, E^2) with E^1 \subseteq E^2, whether there exists a graph G = (V, E) that satisfies property \Pi and E^1 \subseteq E \subseteq E^2.

The GSP have attracted much attention because of many applications and so several sandwich problems were considered for different graph classes, for instance: interval graph, unit interval graph, permutation graph and comparability graph sandwich problems are all NP-complete, while the split graph, threshold graph and cograph sandwich problems are in P.

Dantas et al. (2011, 2015) completely classify the complexity of the F-free GSP when F is a four-vertex subgraph. Motivated by a question proposed by M. C. Golumbic about the complexity status of the GSP of the well known trivially perfect graph class, we study several two forbidden four-vertex graph classes and determine that: {C_4,P_4}-free (trivially perfect), {\overline{claw},P_4}-free, {\overline{paw},P_4}-free, {diamond,P_4}-free, {diamond,K_4}-free, {diamond,C_4}-free, {diamond,paw}-free, {C_4,paw}-free, {claw,paw}-free, {\overline{claw},paw}-free, {\overline{paw},paw}-free, {4K_1,K_4}-free, {\overline{claw},claw}-free and {C_4,2K_2}-free graphs are all in P, while the {K_4,C_4}-free, {K_4,paw}-free, {4K_1,paw}-free and {2K_2,paw}-free graphs are NP-complete. In addition, we show structural properties for several two forbidden four-vertex subgraphs classes.

Confira aqui a apresentação

 

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler