Antena Brasileira de Matemática

Home
About
Actions
News
Production
Antennas
Partners
Links
Contact

frança

Bandeira do brasil

america
frança
hovardabetroad

Antena Brasileira de Matemática

Menu

america
frança
  • Home
  • About
  • Actions
  • News
  • Production
  • Antennas
  • Partners
  • Links
  • Contact

Facebook
Youtube
antena colina
  • Combinatorics Seminar
  • Workshops
  • Minicourses
  • Curta-ciência
  • Interventions
voltar

Matheus Nunes Adauto

Data: 28/02/2024

Título: Pebbling in Kneser graphs.

Palestrante: Matheus Nunes Adauto - PESC/COPPE/UFRJ. 

Data: 28 de fevereiro de 2024, 14 h.

Resumo:  Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling move removes two pebbles from one vertex and places one pebble on an adjacent vertex. The pebbling number $\pi(G)$ is the smallest $t$ so that from any initial configuration of $t$ pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any given target vertex. We consider the pebbling number of Kneser graphs, and give positive evidence for the conjecture that every Kneser graph has pebbling number equal to its number of vertices.

This is joint work with:

 Celina de Figueiredo: PESC/COPPE/UFRJ

 Mariana da Cruz: PESC/COPPE/UFRJ

 Diana Sasaki: IME/UERJ

 Glenn Hurlbert: Virginia Commonwealth University

 Viktoriya Bardenova: Virginia Commonwealth University

 

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler