Recent algorithmic results on equitable coloring

Guilherme C. M. Gomes Matheus R. Guedes <u>Vinicius Fernandes dos Santos</u> Carlos Vinícius G. C. Lima

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Equitable Coloring

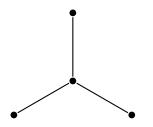
э

<ロト <問ト < 目ト < 目ト

Can we k-color G such that the size of two color classes differ by ≤ 1 ?

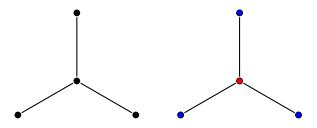
イロト イポト イヨト イヨト

Can we k-color G such that the size of two color classes differ by ≤ 1 ?



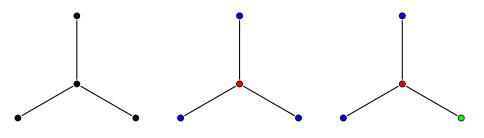
A B A A B A

Can we k-color G such that the size of two color classes differ by ≤ 1 ?



★ ∃ ► < ∃ ►</p>

Can we k-color G such that the size of two color classes differ by ≤ 1 ?



() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Equitable chromatic number

The smallest integer k such that G is equitably k-colorable is the equitable chromatic number $\chi_{=}(G)$.

★ ∃ ► < ∃ ►</p>

Equitable chromatic number

The smallest integer k such that G is equitably k-colorable is the equitable chromatic number $\chi_{=}(G)$.

Equitable Coloring Conjecture

For every connected graph G which is neither a complete graph nor an odd-hole, $\chi_{=}(G) \leq \Delta(G)$.

Equitable chromatic threshold

The smallest integer k such that for every $k' \ge k$, G is equitably k'-colorable is its equitable chromatic threshold $\chi^*_{=}(G)$.

Equitable chromatic threshold

The smallest integer k such that for every $k' \ge k$, G is equitably k'-colorable is its equitable chromatic threshold $\chi^*_{=}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \ge \Delta(G) + 1$. Equivalently, $\chi^*_{=}(G) \le \Delta(G) + 1$.

Equitable chromatic threshold

The smallest integer k such that for every $k' \ge k$, G is equitably k'-colorable is its equitable chromatic threshold $\chi^*_{=}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \ge \Delta(G) + 1$. Equivalently, $\chi^*_{=}(G) \le \Delta(G) + 1$.

Equitable Δ Coloring Conjecture

For every connected graph G which is not a complete graph, an odd-hole nor $K_{2n+1,2n+1}$, for any $n \ge 1$, $\chi^*_{=}(G) \le \Delta(G)$ holds.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Equitable chromatic threshold

The smallest integer k such that for every $k' \ge k$, G is equitably k'-colorable is its equitable chromatic threshold $\chi^*_{=}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \ge \Delta(G) + 1$. Equivalently, $\chi^*_{=}(G) \le \Delta(G) + 1$.

Equitable Δ Coloring Conjecture

For every connected graph G which is not a complete graph, an odd-hole nor $K_{2n+1,2n+1}$, for any $n \ge 1$, $\chi^*_{=}(G) \le \Delta(G)$ holds.

Ko-Wei Lih. "Equitable coloring of graphs". In: *Handbook of combinatorial optimization*. Springer, 2013, pp. 1199–1248

UFF 2019

The story so far...

Class	Complexity
Trees	Р
Forests	Р
Bipartite	NP-complete, even if $k = 3$
Co-bipartite	Р
Cographs	NP-complete, P for each fixed k
Bounded Treewidth	P
Chordal	NP-complete
Block	?
Split	P
Unipolar	?
Interval	NP-complete
Co-interval	Р

2

<ロト <回ト < 回ト < 回ト -

In this talk

Class	Complexity
Trees	Р
Forests	Р
Bipartite	NP-complete, even if $k = 3$
Co-bipartite	Р
Cographs	NP-complete, P for each fixed k
Bounded Treewidth	Р
Chordal	NP-complete
Block	NP-complete
Split	Р
Unipolar	Р
Interval	NP-complete
Co-interval	Р

3

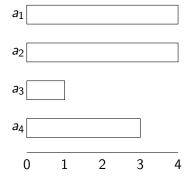
イロト イヨト イヨト イヨト

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_j \in bin_i} a_j = B$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_j \in bin_i} a_j = B$?

$$k = 3$$
 $B = 4$

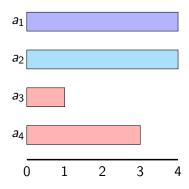


э

A B M A B M

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_j \in bin_i} a_j = B$?

$$k = 3$$
 $B = 4$

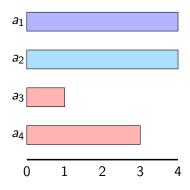


э

A B + A B +

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_i \in bin_i} a_j = B$?

$$k=3$$
 $B=4$



- For each item of *A*, build a gadget with some **key** vertices.
- All key vertices must have the same color.

• • = • • = •

 Key vertices with color *i* → item in *i*-th bin.

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

UFF 2019

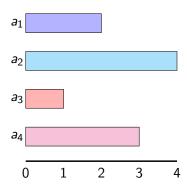
э

イロト イボト イヨト イヨト

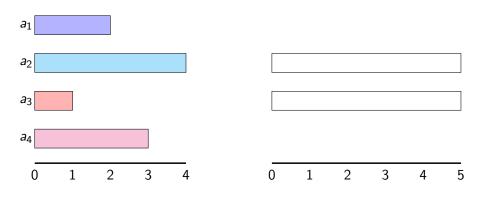
Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_j \in bin_j} a_j = B$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_j \in bin_j} a_j = B$?

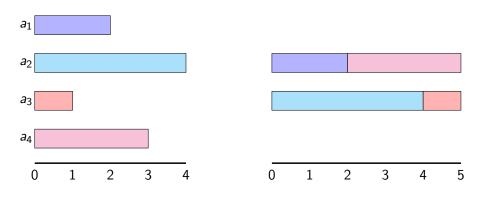


Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_i \in bin_i} a_j = B$?



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Can we partition $A = \{a_1, \ldots, a_n\}$ in k bins such that $\sum_{a_i \in bin_i} a_j = B$?



10 / 25

æ

(a, k)-flowers

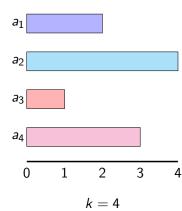
Create a + 1 cliques with k - 1 vertices and add one universal vertex.

э

イロト イボト イヨト イヨト

(a, k)-flowers

Create a + 1 cliques with k - 1 vertices and add one universal vertex.

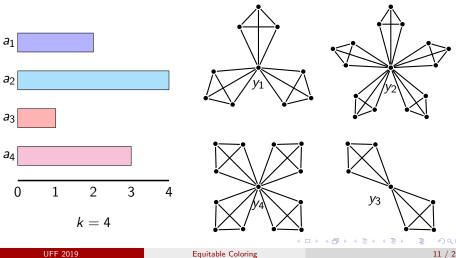


э

・ 同 ト ・ ヨ ト ・ ヨ ト

(a, k)-flowers

Create a + 1 cliques with k - 1 vertices and add one universal vertex.



Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

$$|V(G)| = \sum_{j \in [n]} ((a_j + 1)(k - 1) + 1)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

$$egin{aligned} |V(G)| &= \sum_{j \in [n]} ((a_j+1)(k-1)+1) \ &= (k-1) \left(n + \sum_{j \in [n]} a_j
ight) + n \end{aligned}$$

<日

<</p>

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

$$V(G)| = \sum_{j \in [n]} ((a_j + 1)(k - 1) + 1)$$
$$= (k - 1) \left(n + \sum_{j \in [n]} a_j \right) + n$$
$$= (k - 1)(n + kB) + n$$

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

$$V(G)| = \sum_{j \in [n]} ((a_j + 1)(k - 1) + 1)$$

= $(k - 1) \left(n + \sum_{j \in [n]} a_j \right) + n$
= $(k - 1)(n + kB) + n$
= $kn + k^2B - n - kB + n$

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Construct a graph G as the disjoint union of flowers $F_j = F(a_j, k)$ and try to equitably k-color it.

$$V(G)| = \sum_{j \in [n]} ((a_j + 1)(k - 1) + 1)$$

= $(k - 1) \left(n + \sum_{j \in [n]} a_j \right) + n$
= $(k - 1)(n + kB) + n$
= $kn + k^2B - n - kB + n$
= $k(kB - B + n)$

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution φ to BIN-PACKING, $\psi(y_j) = i$ if $a_j \in \varphi_i$.

э

- 4 目 ト 4 日 ト

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution φ to BIN-PACKING, $\psi(y_j) = i$ if $a_j \in \varphi_i$.

$$|\psi_i| = |\varphi_i| + \sum_{j|y_j \notin \psi_i} (a_j + 1)$$

э

- 4 目 ト 4 日 ト

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution φ to BIN-PACKING, $\psi(y_j) = i$ if $a_j \in \varphi_i$.

$$egin{aligned} \psi_i | &= |arphi_i| + \sum_{j | y_j
otin \psi_i} (\mathsf{a}_j + 1) \ &= |arphi_i| + \sum_{j \in [n]} (\mathsf{a}_j + 1) - \sum_{j | y_i \in \psi_i} (\mathsf{a}_j + 1) \end{aligned}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution φ to BIN-PACKING, $\psi(y_j) = i$ if $a_j \in \varphi_i$.

$$egin{aligned} \psi_i | &= |arphi_i| + \sum_{j | y_j \notin \psi_i} (a_j + 1) \ &= |arphi_i| + \sum_{j \in [n]} (a_j + 1) - \sum_{j | y_j \in \psi_i} (a_j + 1) \ &= |arphi_i| + n + kB - B - |arphi_i| \end{aligned}$$

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution φ to BIN-PACKING, $\psi(y_j) = i$ if $a_j \in \varphi_i$.

$$\begin{aligned} |\psi_i| &= |\varphi_i| + \sum_{j \mid y_j \notin \psi_i} (a_j + 1) \\ &= |\varphi_i| + \sum_{j \in [n]} (a_j + 1) - \sum_{j \mid y_j \in \psi_i} (a_j + 1) \\ &= |\varphi_i| + n + kB - B - |\varphi_i| \\ &= kB - B + n = \frac{|V(G)|}{k} \end{aligned}$$

<日

<</p>

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

A B b A B b

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

 $kB - B + n = |\psi_i|$

A (10) × (10)

Theorem

EQUITABLE COLORING *of block graphs is* NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

$$egin{aligned} &kB-B+n = |\psi_i| \ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \mid y_j \notin \psi_i} (a_j+1) \end{aligned}$$

A B b A B b

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

$$\begin{split} kB - B + n &= |\psi_i| \\ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \mid y_j \notin \psi_i} (a_j + 1) \\ &= \sum_{j \mid y_i \in \psi_i} 1 + \sum_{j \in [n]} (a_j + 1) - \sum_{j \mid y_i \in \psi_i} (a_j + 1) \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

$$\begin{split} kB - B + n &= |\psi_i| \\ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \mid y_j \notin \psi_i} (a_j + 1) \\ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \in [n]} (a_j + 1) - \sum_{j \mid y_j \in \psi_i} (a_j + 1) \\ &= kB + n - \sum_{j \mid y_i \in \psi_i} a_j \end{split}$$

• • = • • = •

Theorem

EQUITABLE COLORING of block graphs is NP-complete.

Given a solution ψ to EQUITABLE COLORING, put a_j in φ_i if $\psi(y_j) = i$.

$$\begin{split} kB - B + n &= |\psi_i| \\ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \mid y_j \notin \psi_i} (a_j + 1) \\ &= \sum_{j \mid y_j \in \psi_i} 1 + \sum_{j \in [n]} (a_j + 1) - \sum_{j \mid y_j \in \psi_i} (a_j + 1) \\ &= kB + n - \sum_{j \mid y_j \in \psi_i} a_j \\ B &= \sum_{j \mid y_j \in \psi_i} a_j \end{split}$$

A B b A B b

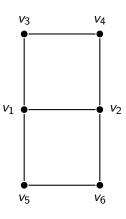
Unipolar graphs

A graph G is unipolar if it has a clique Q such that G - Q is a disjoint union of cliques.

• • = • • = •

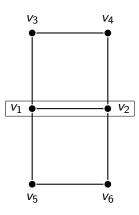
Unipolar graphs

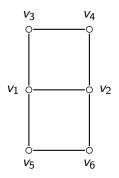
A graph G is unipolar if it has a clique Q such that G - Q is a disjoint union of cliques.



Unipolar graphs

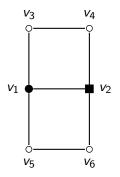
A graph G is unipolar if it has a clique Q such that G - Q is a disjoint union of cliques.





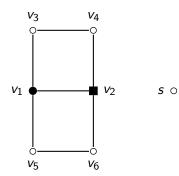
æ

(4回) (4回) (4回)



æ

(4回) (4回) (4回)



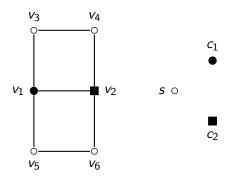
Vertices

Source *s*, sink *t*,

æ

▶ ▲ 문 ▶ ▲ 문 ▶

 $\circ t$



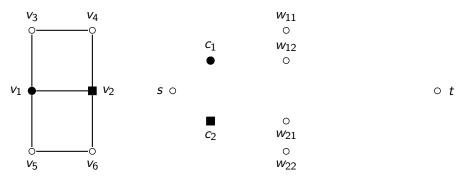
Vertices

Source s, sink t, for each color i, c_i ,

æ

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

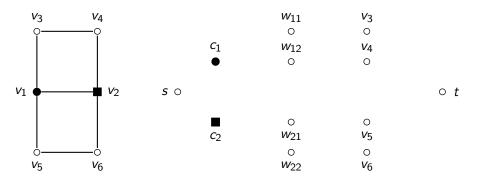
 $\circ t$



Vertices

Source s, sink t, for each color i, c_i , for each color i and clique j, w_{ij} ,

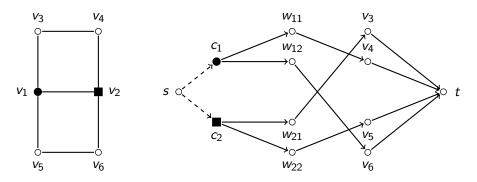
A B A A B A



Vertices

Source *s*, sink *t*, for each color *i*, c_i , for each color *i* and clique *j*, w_{ij} , for vertex $v_{\ell} \notin Q$, v_{ℓ} .

A B A A B A



Vertices

Source *s*, sink *t*, for each color *i*, c_i , for each color *i* and clique *j*, w_{ij} , for vertex $v_{\ell} \notin Q$, v_{ℓ} .

Each flow unit gives the color of one vertex. Solid arcs have unit capacity.

Parameterized Complexity

э

イロト イポト イヨト イヨト

The parameterized story so far...

Class	Parameterized Complexity
Bipartite	paraNP-hard parameterized by #colors
Cographs	W[1]-hard parameterized by #colors
Chordal	W[1]-hard parameterized by #colors
Block	?
Disjoint union of Split	?
$K_{1,4}$ -free interval	?
Independent set $+kv$	FPT
Split $+kv$	W[1]-hard parameterized by <i>k</i>
Disjoint Union of Cliques +kv	?
Complete Multipartite + <i>kv</i>	?
Forest $+kv$	W[1]-hard parameterized by $k + \#$ colors
Path $+kv$?

2

In this talk

Class	Parameterized Complexity
Bipartite	paraNP-hard param. by $\#$ colors
Cographs	W[1]-hard param. by $\#$ colors
Chordal	W[1]-hard param. by $\#$ colors
Block	W[1]-hard param. by $\#$ colors + treedepth
Disjoint union of Split	W[1]-hard param. by $\#$ colors + tw
Interval	W[1]-hard param. by $\#$ colors + bandwidth
Independent set $+kv$	FPT
Split $+kv$	W[1]-hard param. by <i>k</i>
Cluster $+kv$	FPT param. by <i>k</i>
Co-cluster $+kv$	FPT param. by <i>k</i>
Forest $+kv$	W[1]-hard param. by $k + \#$ colors
Path +kv	W[1]-hard param. by $k + \#$ colors

Ξ.

イロン イ理 とく ヨン イ ヨン

In this talk

Class	Parameterized Complexity
Bipartite	paraNP-hard param. by $\#$ colors
Cographs	W[1]-hard param. by $\#$ colors
Chordal	W[1]-hard param. by $#$ colors
Block	W[1]-hard param. by $#$ colors + treedepth
Disjoint union of Split	W[1]-hard param. by $\#$ colors + tw
Interval	W[1]-hard param. by $\#$ colors + bandwidth
Independent set $+kv$	FPT
Split $+kv$	W[1]-hard param. by k
Cluster $+kv$	FPT param. by <i>k</i>
Co-cluster $+kv$	FPT param. by <i>k</i>
Forest $+kv$	W[1]-hard param. by $k + \#$ colors
Path $+kv$	W[1]-hard param. by $k + \#$ colors

Bin-packing is W[1]-hard parameterized by #bins.

Hardness results

Disjoint union of split graphs (complete *p*-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

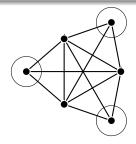
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Disjoint union of split graphs (complete *p*-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

• Each *a_i* becomes a split graph with k-1 vertices in the clique and $a_i + 1$ vertices in the independent set (key vertices).



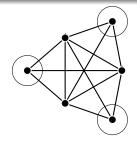
Disjoint union of split graphs (complete *p*-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

• Each *a_i* becomes a split graph with k-1 vertices in the clique and $a_i + 1$ vertices in the independent set (key vertices).

•
$$|V(G)| = \sum_{a_j \in A} (k-1) + (a_j+1) = k(n+B).$$

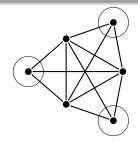


Disjoint union of split graphs (complete *p*-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

- Each *a_i* becomes a split graph with k-1 vertices in the clique and $a_i + 1$ vertices in the independent set (key vertices).
- |V(G)| = $\sum_{a_i \in A} (k-1) + (a_j+1) = k(n+B).$
- Try equitably k-color it.



- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

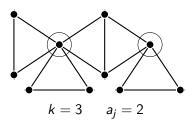
EQUITABLE COLORING of $K_{1,r}$ -free interval graphs is W[1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \ge 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

A B b A B b

Theorem

EQUITABLE COLORING of $K_{1,r}$ -free interval graphs is W[1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \ge 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

Each a_j becomes a sequence of a_j cliques of size k - 1. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size k - 1 attached to it.



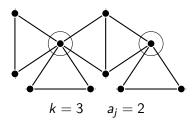
- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

EQUITABLE COLORING of $K_{1,r}$ -free interval graphs is W[1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \ge 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

Each a_j becomes a sequence of a_j cliques of size k - 1. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size k - 1 attached to it.

•
$$|V(G)| = \sum_{a_j \in A} a_j(k-1) + a_j k = k(2kB - B).$$



- 4 回 ト 4 三 ト 4 三 ト

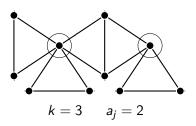
Theorem

EQUITABLE COLORING of $K_{1,r}$ -free interval graphs is W[1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \ge 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

Each a_j becomes a sequence of a_j cliques of size k - 1. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size k - 1 attached to it.

•
$$|V(G)| = \sum_{a_j \in A} a_j(k-1) + a_j k = k(2kB - B).$$

• Again, try to equitably k-color G.

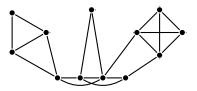


A B A A B A

G is a cluster graph if each of its connected components is a clique (cluster).

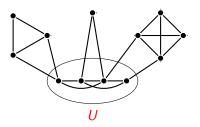
イロト イポト イヨト イヨト

G is a cluster graph if each of its connected components is a clique (cluster).



• • = • • = •

G is a cluster graph if each of its connected components is a clique (cluster).



G is a cluster +kv graph if there is a set $U \subset V(G)$ of size *k* such that G - U is a cluster graph, with clusters $\{C_1, \ldots, C_\ell\}$.

A D N A B N A B N A B N

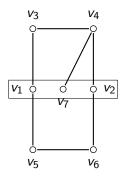
G is a cluster graph if each of its connected components is a clique (cluster).

G is a cluster +kv graph if there is a set $U \subset V(G)$ of size *k* such that G - U is a cluster graph, with clusters $\{C_1, \ldots, C_\ell\}$.

э

A D N A B N A B N A B N

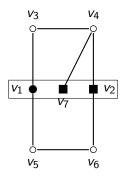
Cluster +kv: max-flow again



æ

<ロト <問ト < 目ト < 目ト

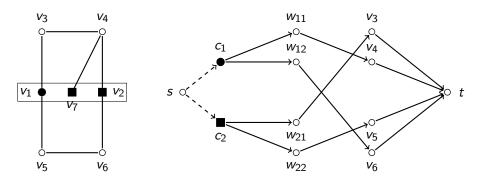
Cluster +kv: max-flow again



æ

<ロト <問ト < 目ト < 目ト

Cluster +kv: max-flow again



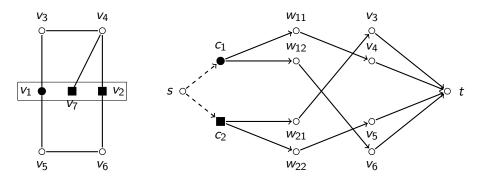
Algorithm

For each of the k^k colorings of U, construct the auxiliary graph.

A D N A B N A B N A B N

FPT algorithms

Cluster +kv: max-flow again

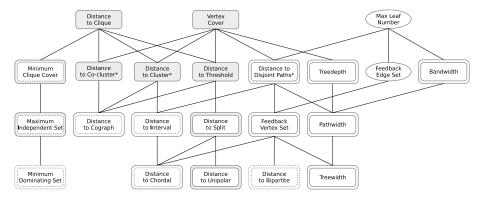


Algorithm

For each of the k^k colorings of U, construct the auxiliary graph. Take into account the #times color i was used in U on the capacity of the (s, c_i) arcs.

< ロ > < 同 > < 回 > < 回 >

Parameterized landscape



3

イロト イヨト イヨト イヨト

Thank you!

UFF 2019

3