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Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by < 17 )
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Equitable Coloring

Some important stuff |

Equitable chromatic number

The smallest integer k such that G is equitably k-colorable is the equitable
chromatic number x—(G).
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Equitable Coloring

Some important stuff |

Equitable chromatic number

The smallest integer k such that G is equitably k-colorable is the equitable
chromatic number x—(G).

v

Equitable Coloring Conjecture

For every connected graph G which is neither a complete graph nor an
odd-hole, x=(G) < A(G).
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k'-colorable is its equitable chromatic threshold x* (G).

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if k > A(G) + 1. Equivalently,
X2(G) < A(G) + 1.

Equitable A Coloring Conjecture

For every connected graph G which is not a complete graph, an odd-hole
nor Kont12n+1, for any n > 1, x2(G) < A(G) holds.

Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of
combinatorial optimization. Springer, 2013, pp. 1199-1248
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The story so far...

Class Complexity

Trees P

Forests P

Bipartite NP-complete, even if k =3
Co-bipartite P

Cographs NP-complete, P for each fixed k
Bounded Treewidth | P

Chordal NP-complete

Block ?

Split P

Unipolar 7

Interval NP-complete

Co-interval P
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Equitable Coloring

In this talk
Class Complexity
Trees P
Forests P
Bipartite NP-complete, even if k =3
Co-bipartite P
Cographs NP-complete, P for each fixed k
Bounded Treewidth | P
Chordal NP-complete
Block NP-complete
Split P
Unipolar P
Interval NP-complete
Co-interval P
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Bin Packing

Can we partition A= {ay,...,an} in k bins such that 3=, cyiy, aj = B? J
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Bin Packing

Can we partition A= {ay,...,an} in k bins such that 3=, cyiy, aj = B? J

k=3 B=4

a1] |

@ For each item of A, build a
‘ gadget with some key vertices.

32‘

o All key vertices must have the

same color.
al |

@ Key vertices with color i —
34‘ ‘ item in i-th bin.

0 1 2 3 4
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Block graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete. J
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Bin Packing

Can we partition A= {ay,...,ap} in k bins such that 3_, cpn, aj = B? J
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Equitable Coloring

(a, k)-flowers

Create a + 1 cliques with kK — 1 vertices and add one universal vertex. J
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Equitable Coloring

(a, k)-flowers

Create a + 1 cliques with kK — 1 vertices and add one universal vertex. |
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Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete. }

Construct a graph G as the disjoint union of flowers F; = F(aj, k) and try
to equitably k-color it.
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Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete. J

Construct a graph G as the disjoint union of flowers F; = F(aj, k) and try
to equitably k-color it.

V() = ((a + )k —1)+1)

J€ln]

Z(k—l)(n+Zaj)+n

Jelnl
=(k—1)(n+kB)+n
—kn+k?B—n—kB+n
= k(kB — B+ n)
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Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete. J

Given a solution ¢ to BIN-PACKING, ¥(y;) = i if aj € ;.
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Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete. J

Given a solution 7) to EQUITABLE COLORING, put a; in ¢; if ¢(y;) = i.
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EQUITABLE COLORING of block graphs is NP-complete. J

Given a solution 7) to EQUITABLE COLORING, put a; in ¢; if ¢(y;) = i.
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Unipolar graphs

A graph G is unipolar if it has a clique Q such that G — Q is a disjoint
union of cliques. J
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Equitable Coloring

Unipolar graphs

A graph G is unipolar if it has a clique Q such that G — Q is a disjoint

union of cliques.
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Equitable Coloring

Unipolar graphs

A graph G is unipolar if it has a clique Q such that G — Q is a disjoint

union of cliques.
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Equitable Coloring

A max-flow based algorithm
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A max-flow based algorithm
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Source s, sink t, for each color i, ¢;, for each color i and clique j, wj;, for

vertex vy ¢ Q, vy.
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Equitable Coloring

A max-flow based algorithm

V3 Vg wi1 V3
O——0 O. )
c /Vlz va
-
) @ Q 0.
Vie————Hu W s o t
‘m— ¢ o
C2\/)V21 V5
o——O O 9]
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Vertices

Source s, sink t, for each color i, ¢;, for each color i and clique j, wj;, for
vertex vy ¢ Q, vy.

Each flow unit gives the color of one vertex. Solid arcs have unit capacity. J
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Parameterized Complexity

Parameterized Complexity J
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Parameterized Complexity

The parameterized story so far...

Class Parameterized Complexity

Bipartite paraNP-hard parameterized by #colors
Cographs WI(1]-hard parameterized by #colors
Chordal W(1]-hard parameterized by #colors
Block ?

Disjoint union of Split 7

K1 4-free interval ?

Independent set +kv FPT

Split +kv W(1]-hard parameterized by k

Disjoint Union of Cliques +kv | 7

Complete Multipartite 4+kv 7

Forest +kv WI(1]-hard parameterized by k+ #-colors
Path +kv ?
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Parameterized Complexity

In this talk
Class Parameterized Complexity
Bipartite paraNP-hard param. by #colors
Cographs WI(1]-hard param. by #colors
Chordal WI[1]-hard param. by #colors
Block WI[1]-hard param. by #colors + treedepth
Disjoint union of Split | W[1]-hard param. by #colors + tw
Interval W][1]-hard param. by #colors + bandwidth
Independent set +kv | FPT
Split +kv W(1]-hard param. by k
Cluster +kv FPT param. by k
Co-cluster +kv FPT param. by k
Forest +kv W(1]-hard param. by k + #colors
Path +kv WI[1]-hard param. by k + #colors
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Parameterized Complexity

In this talk
Class Parameterized Complexity
Bipartite paraNP-hard param. by #colors
Cographs WI(1]-hard param. by #colors
Chordal WI[1]-hard param. by #colors
Block WI[1]-hard param. by #colors + treedepth
Disjoint union of Split | W[1]-hard param. by #colors + tw
Interval W][1]-hard param. by #colors + bandwidth
Independent set +kv | FPT
Split +kv W(1]-hard param. by k
Cluster +kv FPT param. by k
Co-cluster +kv FPT param. by k
Forest +kv W(1]-hard param. by k + #colors
Path +kv WI[1]-hard param. by k + #colors
Bin-packing is W[1]-hard parameterized by #bins. J
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Parameterized Complexity Hardness results

Disjoint union of split graphs (complete p-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W|[1]-hard
when parameterized by number of colors and treewidth.
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G b
Disjoint union of split graphs (complete p-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W|[1]-hard
when parameterized by number of colors and treewidth.

@ Each aj becomes a split graph
with k — 1 vertices in the clique
and a; + 1 vertices in the
independent set (key vertices).
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Disjoint union of split graphs (complete p-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W|[1]-hard
when parameterized by number of colors and treewidth.

@ Each aj becomes a split graph
with k — 1 vertices in the clique

®

and a; + 1 vertices in the

independent set (key vertices). ®
° |V(G)| =

3, calk—1)+(a+1) = k(n+B). .
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G b
Disjoint union of split graphs (complete p-partite)

Theorem

EQUITABLE COLORING of disjoint union of split graphs is W|[1]-hard
when parameterized by number of colors and treewidth.

@ Each aj becomes a split graph
with k — 1 vertices in the clique

®
and a; + 1 vertices in the
independent set (key vertices). ®
° |V(G)| =
3, calk—1)+(a+1) = k(n+B). .

@ Try equitably k-color it.
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Parameterized Complexity Hardness results

Ki ,-free interval graphs

Theorem

EQUuUITABLE COLORING of Kj ,-free interval graphs is W[1]-hard when
parameterized by number of colors, treewidth and maximum degree if

r > 4, otherwise it is solvable in polynomial time (consequence of de
Werra'85).
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Ki ,-free interval graphs

Theorem

EQUuUITABLE COLORING of Kj ,-free interval graphs is W[1]-hard when
parameterized by number of colors, treewidth and maximum degree if

r > 4, otherwise it is solvable in polynomial time (consequence of de
Werra'85).

@ Each aj becomes a sequence of a;
cliques of size k — 1. Add one

universal vertex to each pair of 7 7
consecutive cliques. Said vertex
also has an extra clique of size
k — 1 attached to it. d hd
. .

( ]
k=3 aj:2
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e iz vzalis
Ki ,-free interval graphs

Theorem

EQUuUITABLE COLORING of Kj ,-free interval graphs is W[1]-hard when
parameterized by number of colors, treewidth and maximum degree if

r > 4, otherwise it is solvable in polynomial time (consequence of de
Werra'85).

@ Each aj becomes a sequence of a;
cliques of size k — 1. Add one

universal vertex to each pair of 7 7
consecutive cliques. Said vertex
also has an extra clique of size
k — 1 attached to it. d hd
. .

] L}
o [V(G)| =3 caaj(k—1)+ajk = K
k(2kB — B). 3
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e iz vzalis
Ki ,-free interval graphs

Theorem

EQUuUITABLE COLORING of Kj ,-free interval graphs is W[1]-hard when
parameterized by number of colors, treewidth and maximum degree if

r > 4, otherwise it is solvable in polynomial time (consequence of de
Werra'85).

@ Each aj becomes a sequence of a;
cliques of size k — 1. Add one

universal vertex to each pair of
consecutive cliques. Said vertex
also has an extra clique of size

k — 1 attached to it.

o |V(6)| = Tpeadi(k—1)+ak = 3 .o
k(2kB — B). 4

@ Again, try to equitably k-color G.
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FPT algorithms
Cluster +kv

G is a cluster graph if each of its connected components is a clique
(cluster).
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FPT algorithms
Cluster +kv

G is a cluster graph if each of its connected components is a clique
(cluster).

G is a cluster +kv graph if there is a set U C V/(G) of size k such that
G — U is a cluster graph, with clusters {Cy, ..., C}. J

UFF 2019 Equitable Coloring 22 /25



FPT algorithms
Cluster +kv

G is a cluster graph if each of its connected components is a clique
(cluster).

G is a cluster +kv graph if there is a set U C V/(G) of size k such that
G — U is a cluster graph, with clusters {Cy, ..., C}. J

UFF 2019 Equitable Coloring 22 /25



Parameterized Complexity FPT algorithms

Cluster +kv: max-flow again
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Parameterized Complexity FPT algorithms

Cluster +kv: max-flow again

v3 7} w11 V3
o—o0 o) o)
a /Vlz A
e
. o o
vie o WV s of ot
V7
‘m— G o
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o—0 o) o)
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Algorithm

For each of the k¥ colorings of U, construct the auxiliary graph.
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Parameterized Complexity FPT algorithms

Cluster +kv: max-flow again

v3 7} w11 V3
o—0 o o)
a /Vlz A
e
. o o
vie o WV s of ot
V7
‘W—0 o
CZ\/JQI Vs
O—0 o O
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Algorithm

For each of the k* colorings of U, construct the auxiliary graph. Take into
account the #times color i was used in U on the capacity of the (s, ¢;)
arcs.
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rameterized Complexity FPT algorithms

Parameterized landscape

ance Max Leaf
to Clique Number

Minimum Distance Distance Distance Distance to Treedepth Feedback
i Clique Cover to Co-cluster* to Cluster* to Threshold Disjoint Paths* P Edge Set
Maximum Distance  : Distance Distance Feedback Pathwidth
Independent Set to Cograph to Interval to Split Vertex Set
i1 Minimum i Distance Distance Distance | Treewidth
::Dominating Set : toChordal to Unipolar : to Bipartite eewl
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Thank you!
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