Recent algorithmic results on equitable coloring

Guilherme C. M. Gomes
Matheus R. Guedes
Vinicius Fernandes dos Santos
Carlos Vinícius G. C. Lima
Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Equitable Coloring

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1 ?

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1 ?

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1 ?

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1 ?

Some important stuff I

Equitable chromatic number
The smallest integer k such that G is equitably k-colorable is the equitable chromatic number $\chi=(G)$.

Some important stuff I

Equitable chromatic number
The smallest integer k such that G is equitably k-colorable is the equitable chromatic number $\chi=(G)$.

Equitable Coloring Conjecture

For every connected graph G which is neither a complete graph nor an odd-hole, $\chi_{=}(G) \leq \Delta(G)$.

Some important stuff II

Equitable chromatic threshold

The smallest integer k such that for every $k^{\prime} \geq k, G$ is equitably k^{\prime}-colorable is its equitable chromatic threshold $\chi_{=}^{*}(G)$.

Some important stuff II

Equitable chromatic threshold

The smallest integer k such that for every $k^{\prime} \geq k, G$ is equitably k^{\prime}-colorable is its equitable chromatic threshold $\chi_{=}^{*}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \geq \Delta(G)+1$. Equivalently, $\chi_{=}^{*}(G) \leq \Delta(G)+1$.

Some important stuff II

Equitable chromatic threshold
The smallest integer k such that for every $k^{\prime} \geq k, G$ is equitably k^{\prime}-colorable is its equitable chromatic threshold $\chi_{=}^{*}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \geq \Delta(G)+1$. Equivalently, $\chi_{=}^{*}(G) \leq \Delta(G)+1$.

Equitable Δ Coloring Conjecture

For every connected graph G which is not a complete graph, an odd-hole nor $K_{2 n+1,2 n+1}$, for any $n \geq 1, \chi_{=}^{*}(G) \leq \Delta(G)$ holds.

Some important stuff II

Equitable chromatic threshold
The smallest integer k such that for every $k^{\prime} \geq k, G$ is equitably k^{\prime}-colorable is its equitable chromatic threshold $\chi_{=}^{*}(G)$.

Hajnal-Szmerédi Theorem

Any graph G is equitably k-colorable if $k \geq \Delta(G)+1$. Equivalently, $\chi_{=}^{*}(G) \leq \Delta(G)+1$.

Equitable Δ Coloring Conjecture

For every connected graph G which is not a complete graph, an odd-hole nor $K_{2 n+1,2 n+1}$, for any $n \geq 1, \chi_{=}^{*}(G) \leq \Delta(G)$ holds.

Ko-Wei Lih. "Equitable coloring of graphs". In: Handbook of combinatorial optimization. Springer, 2013, pp. 1199-1248

The story so far...

Class	Complexity
Trees	P
Forests	P
Bipartite	NP-complete, even if $k=3$
Co-bipartite	P
Cographs	NP-complete, P for each fixed k
Bounded Treewidth	P
Chordal	NP-complete
Block	$?$
Split	P
Unipolar	$?$
Interval	NP-complete
Co-interval	P

In this talk

Class	Complexity
Trees	P
Forests	P
Bipartite	NP-complete, even if $k=3$
Co-bipartite	P
Cographs	NP-complete, P for each fixed k
Bounded Treewidth	P
Chordal	NP-complete
Block	NP-complete
Split	P
Unipolar	P
Interval	NP-complete
Co-interval	P

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

$$
k=3 \quad B=4
$$

\square
\square
\square

a_{4} 1 2 3

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

$$
k=3 \quad B=4
$$

\square
\square

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

$$
k=3 \quad B=4
$$

- For each item of A, build a gadget with some key vertices.
- All key vertices must have the same color.
- Key vertices with color $i \rightarrow$ item in i-th bin.

Block graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?

Bin Packing

Can we partition $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in k bins such that $\sum_{a_{j} \in \operatorname{bin}_{i}} a_{j}=B$?
\square
\square

(a, k)-flowers

Create $a+1$ cliques with $k-1$ vertices and add one universal vertex.

(a, k)-flowers

Create $a+1$ cliques with $k-1$ vertices and add one universal vertex.

(a, k)-flowers

Create $a+1$ cliques with $k-1$ vertices and add one universal vertex.

$$
k=4
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

$$
|V(G)|=\sum_{j \in[n]}\left(\left(a_{j}+1\right)(k-1)+1\right)
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

$$
\begin{aligned}
|V(G)| & =\sum_{j \in[n]}\left(\left(a_{j}+1\right)(k-1)+1\right) \\
& =(k-1)\left(n+\sum_{j \in[n]} a_{j}\right)+n
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

$$
\begin{aligned}
|V(G)| & =\sum_{j \in[n]}\left(\left(a_{j}+1\right)(k-1)+1\right) \\
& =(k-1)\left(n+\sum_{j \in[n]} a_{j}\right)+n \\
& =(k-1)(n+k B)+n
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

$$
\begin{aligned}
|V(G)| & =\sum_{j \in[n]}\left(\left(a_{j}+1\right)(k-1)+1\right) \\
& =(k-1)\left(n+\sum_{j \in[n]} a_{j}\right)+n \\
& =(k-1)(n+k B)+n \\
& =k n+k^{2} B-n-k B+n
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Construct a graph G as the disjoint union of flowers $F_{j}=F\left(a_{j}, k\right)$ and try to equitably k-color it.

$$
\begin{aligned}
|V(G)| & =\sum_{j \in[n]}\left(\left(a_{j}+1\right)(k-1)+1\right) \\
& =(k-1)\left(n+\sum_{j \in[n]} a_{j}\right)+n \\
& =(k-1)(n+k B)+n \\
& =k n+k^{2} B-n-k B+n \\
& =k(k B-B+n)
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution φ to BIN-PACKING, $\psi\left(y_{j}\right)=i$ if $a_{j} \in \varphi_{i}$.

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution φ to BIN-PACKING, $\psi\left(y_{j}\right)=i$ if $a_{j} \in \varphi_{i}$.

$$
\left|\psi_{i}\right|=\left|\varphi_{i}\right|+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right)
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution φ to BIN-PACKING, $\psi\left(y_{j}\right)=i$ if $a_{j} \in \varphi_{i}$.

$$
\begin{aligned}
\left|\psi_{i}\right| & =\left|\varphi_{i}\right|+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\left|\varphi_{i}\right|+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right)
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution φ to BIN-PACKING, $\psi\left(y_{j}\right)=i$ if $a_{j} \in \varphi_{i}$.

$$
\begin{aligned}
\left|\psi_{i}\right| & =\left|\varphi_{i}\right|+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\left|\varphi_{i}\right|+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right) \\
& =\left|\varphi_{i}\right|+n+k B-B-\left|\varphi_{i}\right|
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution φ to BIN-PACKING, $\psi\left(y_{j}\right)=i$ if $a_{j} \in \varphi_{i}$.

$$
\begin{aligned}
\left|\psi_{i}\right| & =\left|\varphi_{i}\right|+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\left|\varphi_{i}\right|+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right) \\
& =\left|\varphi_{i}\right|+n+k B-B-\left|\varphi_{i}\right| \\
& =k B-B+n=\frac{|V(G)|}{k}
\end{aligned}
$$

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to equitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

Block Graphs

Theorem
EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to equitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

$$
k B-B+n=\left|\psi_{i}\right|
$$

Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to EQUitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

$$
\begin{aligned}
k B-B+n & =\left|\psi_{i}\right| \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right)
\end{aligned}
$$

Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to EQUitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

$$
\begin{aligned}
k B-B+n & =\left|\psi_{i}\right| \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right)
\end{aligned}
$$

Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to EQUitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

$$
\begin{aligned}
k B-B+n & =\left|\psi_{i}\right| \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right) \\
& =k B+n-\sum_{j \mid y_{j} \in \psi_{i}} a_{j}
\end{aligned}
$$

Block Graphs

Theorem

EQUITABLE COLORING of block graphs is NP-complete.
Given a solution ψ to equitable coloring, put a_{j} in φ_{i} if $\psi\left(y_{j}\right)=i$.

$$
\begin{aligned}
k B-B+n & =\left|\psi_{i}\right| \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \mid y_{j} \notin \psi_{i}}\left(a_{j}+1\right) \\
& =\sum_{j \mid y_{j} \in \psi_{i}} 1+\sum_{j \in[n]}\left(a_{j}+1\right)-\sum_{j \mid y_{j} \in \psi_{i}}\left(a_{j}+1\right) \\
& =k B+n-\sum_{j \mid y_{j} \in \psi_{i}} a_{j} \\
B & =\sum_{j \mid y_{j} \in \psi_{i}} a_{j}
\end{aligned}
$$

Unipolar graphs

A graph G is unipolar if it has a clique Q such that $G-Q$ is a disjoint union of cliques.

Unipolar graphs

A graph G is unipolar if it has a clique Q such that $G-Q$ is a disjoint union of cliques.

Unipolar graphs

A graph G is unipolar if it has a clique Q such that $G-Q$ is a disjoint union of cliques.

A max-flow based algorithm

A max-flow based algorithm

A max-flow based algorithm

Vertices
Source s, sink t,

A max-flow based algorithm

Vertices
Source s, sink t, for each color i, c_{i},

A max-flow based algorithm

Vertices
Source s, sink t, for each color i, c_{i}, for each color i and clique $j, w_{i j}$,

A max-flow based algorithm

Vertices
Source s, sink t, for each color i, c_{i}, for each color i and clique $j, w_{i j}$, for vertex $v_{\ell} \notin Q, v_{\ell}$.

A max-flow based algorithm

Vertices

Source s, sink t, for each color i, c_{i}, for each color i and clique $j, w_{i j}$, for vertex $v_{\ell} \notin Q, v_{\ell}$.

Each flow unit gives the color of one vertex. Solid arcs have unit capacity.

Parameterized Complexity

The parameterized story so far...

Class	Parameterized Complexity
Bipartite	paraNP-hard parameterized by \#colors
Cographs	W[1]-hard parameterized by \#colors
Chordal	W[1]-hard parameterized by \#colors
Block	$?$
Disjoint union of Split	$?$
$K_{1,4}$-free interval	$?$
Independent set $+k v$	FPT
Split $+k v$	W[1]-hard parameterized by k
Disjoint Union of Cliques $+k v$	$?$
Complete Multipartite $+k v$	$?$
Forest $+k v$	W[1]-hard parameterized by $k+$ \#colors
Path $+k v$	$?$

In this talk

Class	Parameterized Complexity
Bipartite	paraNP-hard param. by \#colors
Cographs	W[1]-hard param. by \#colors
Chordal	W[1]-hard param. by \#colors
Block	W[1]-hard param. by \#colors + treedepth
Disjoint union of Split	W[1]-hard param. by \#colors + tw
Interval	W[1]-hard param. by \#colors + bandwidth
Independent set $+k v$	FPT
Split $+k v$	W[1]-hard param. by k
Cluster $+k v$	FPT param. by k
Co-cluster $+k v$	FPT param. by k
Forest $+k v$	W[1]-hard param. by $k+$ \#colors
Path $+k v$	W[1]-hard param. by $k+$ \#colors

In this talk

Class	Parameterized Complexity
Bipartite	paraNP-hard param. by \#colors
Cographs	W[1]-hard param. by \#colors
Chordal	W[1]-hard param. by \#colors
Block	W[1]-hard param. by \#colors + treedepth
Disjoint union of Split	W[1]-hard param. by \#colors + tw
Interval	W[1]-hard param. by \#colors + bandwidth
Independent set $+k v$	FPT
Split $+k v$	W[1]-hard param. by k
Cluster $+k v$	FPT param. by k
Co-cluster $+k v$	FPT param. by k
Forest $+k v$	W[1]-hard param. by $k+$ \#colors
Path $+k v$	W[1]-hard param. by $k+$ \#colors

Bin-packing is W[1]-hard parameterized by \#bins.

Disjoint union of split graphs (complete p-partite)

Theorem
Equitable Coloring of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

Disjoint union of split graphs (complete p-partite)

Theorem

Equitable Coloring of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

- Each a_{j} becomes a split graph with $k-1$ vertices in the clique and $a_{j}+1$ vertices in the independent set (key vertices).

Disjoint union of split graphs (complete p-partite)

Theorem

Equitable Coloring of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

- Each a_{j} becomes a split graph with $k-1$ vertices in the clique and $a_{j}+1$ vertices in the independent set (key vertices).
- $|V(G)|=$ $\sum_{a_{j} \in A}(k-1)+\left(a_{j}+1\right)=k(n+B)$.

Disjoint union of split graphs (complete p-partite)

Theorem

Equitable Coloring of disjoint union of split graphs is W[1]-hard when parameterized by number of colors and treewidth.

- Each a_{j} becomes a split graph with $k-1$ vertices in the clique and $a_{j}+1$ vertices in the independent set (key vertices).
- $|V(G)|=$ $\sum_{a_{j} \in A}(k-1)+\left(a_{j}+1\right)=k(n+B)$.
- Try equitably k-color it.

$K_{1, r}-$ free interval graphs

Theorem
Equitable Coloring of $K_{1, r}$-free interval graphs is W [1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \geq 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

$K_{1, r}-$ free interval graphs

Theorem

Equitable Coloring of $K_{1, r}$-free interval graphs is W [1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \geq 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

- Each a_{j} becomes a sequence of a_{j} cliques of size $k-1$. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size $k-1$ attached to it.

$k=3 \quad a_{j}=2$

$K_{1, r}-$ free interval graphs

Theorem

Equitable Coloring of $K_{1, r}$-free interval graphs is W [1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \geq 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

- Each a_{j} becomes a sequence of a_{j} cliques of size $k-1$. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size $k-1$ attached to it.
- $|V(G)|=\sum_{a_{j} \in A} a_{j}(k-1)+a_{j} k=$ $k(2 k B-B)$.

$k=3 \quad a_{j}=2$

$K_{1, r}-$ free interval graphs

Theorem

Equitable Coloring of $K_{1, r}$-free interval graphs is W [1]-hard when parameterized by number of colors, treewidth and maximum degree if $r \geq 4$, otherwise it is solvable in polynomial time (consequence of de Werra'85).

- Each a_{j} becomes a sequence of a_{j} cliques of size $k-1$. Add one universal vertex to each pair of consecutive cliques. Said vertex also has an extra clique of size $k-1$ attached to it.
- $|V(G)|=\sum_{a_{j} \in A} a_{j}(k-1)+a_{j} k=$ $k(2 k B-B)$.

$k=3 \quad a_{j}=2$
- Again, try to equitably k-color G.

Cluster + kv

G is a cluster graph if each of its connected components is a clique (cluster).

Cluster + kv

G is a cluster graph if each of its connected components is a clique (cluster).

Cluster + kv

G is a cluster graph if each of its connected components is a clique (cluster).

G is a cluster $+k v$ graph if there is a set $U \subset V(G)$ of size k such that $G-U$ is a cluster graph, with clusters $\left\{C_{1}, \ldots, C_{\ell}\right\}$.

Cluster + kv

G is a cluster graph if each of its connected components is a clique (cluster).

G is a cluster $+k v$ graph if there is a set $U \subset V(G)$ of size k such that $G-U$ is a cluster graph, with clusters $\left\{C_{1}, \ldots, C_{\ell}\right\}$.

Cluster + kv: max-flow again

Cluster + kv: max-flow again

Cluster + kv: max-flow again

Algorithm

For each of the k^{k} colorings of U, construct the auxiliary graph.

Cluster + kv: max-flow again

Algorithm

For each of the k^{k} colorings of U, construct the auxiliary graph. Take into account the \#times color i was used in U on the capacity of the $\left(s, c_{i}\right)$ arcs.

Parameterized landscape

Thank you!

