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Equitable Coloring

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1?

UFF 2019 Equitable Coloring 3 / 25



Equitable Coloring

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1?

UFF 2019 Equitable Coloring 3 / 25



Equitable Coloring

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1?

UFF 2019 Equitable Coloring 3 / 25



Equitable Coloring

Equitable (Vertex) Coloring

Can we k-color G such that the size of two color classes differ by ≤ 1?

UFF 2019 Equitable Coloring 3 / 25



Equitable Coloring

Some important stuff I

Equitable chromatic number
The smallest integer k such that G is equitably k-colorable is the equitable
chromatic number χ=(G).

Equitable Coloring Conjecture
For every connected graph G which is neither a complete graph nor an
odd-hole, χ=(G) ≤ ∆(G).
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Equitable Coloring

Some important stuff II

Equitable chromatic threshold
The smallest integer k such that for every k ′ ≥ k, G is equitably
k ′-colorable is its equitable chromatic threshold χ∗=(G).

Hajnal-Szmerédi Theorem
Any graph G is equitably k-colorable if k ≥ ∆(G) + 1. Equivalently,
χ∗=(G) ≤ ∆(G) + 1.

Equitable ∆ Coloring Conjecture
For every connected graph G which is not a complete graph, an odd-hole
nor K2n+1,2n+1, for any n ≥ 1, χ∗=(G) ≤ ∆(G) holds.

Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of
combinatorial optimization. Springer, 2013, pp. 1199–1248
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Equitable Coloring

The story so far...

Class Complexity
Trees P
Forests P
Bipartite NP-complete, even if k = 3
Co-bipartite P
Cographs NP-complete, P for each fixed k
Bounded Treewidth P
Chordal NP-complete
Block ?
Split P
Unipolar ?
Interval NP-complete
Co-interval P
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Class Complexity
Trees P
Forests P
Bipartite NP-complete, even if k = 3
Co-bipartite P
Cographs NP-complete, P for each fixed k
Bounded Treewidth P
Chordal NP-complete
Block NP-complete
Split P
Unipolar P
Interval NP-complete
Co-interval P

UFF 2019 Equitable Coloring 7 / 25



Equitable Coloring

Bin Packing

Can we partition A = {a1, . . . , an} in k bins such that
∑

aj∈bini aj = B?

k = 3 B = 4

a1

a2

a3

a4

a1

a2

a3

a4

0 1 2 3 4

For each item of A, build a
gadget with some key vertices.
All key vertices must have the
same color.
Key vertices with color i →
item in i-th bin.
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Equitable Coloring

Block graphs

Theorem
equitable coloring of block graphs is NP-complete.
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Equitable Coloring

(a, k)-flowers

Create a + 1 cliques with k − 1 vertices and add one universal vertex.

a1

a2

a3

a4

0 1 2 3 4

k = 4

y1 y2

y3y4
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Equitable Coloring

Block Graphs

Theorem
equitable coloring of block graphs is NP-complete.

Construct a graph G as the disjoint union of flowers Fj = F (aj , k) and try
to equitably k-color it.

|V (G)| =
∑
j∈[n]

((aj + 1)(k − 1) + 1)

= (k − 1)

n +
∑
j∈[n]

aj

 + n

= (k − 1)(n + kB) + n
= kn + k2B − n − kB + n
= k(kB − B + n)
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Equitable Coloring

Block Graphs

Theorem
equitable coloring of block graphs is NP-complete.

Given a solution ϕ to bin-packing, ψ(yj) = i if aj ∈ ϕi .

|ψi | = |ϕi |+
∑

j|yj /∈ψi

(aj + 1)

= |ϕi |+
∑
j∈[n]

(aj + 1)−
∑

j|yj∈ψi

(aj + 1)

= |ϕi |+ n + kB − B − |ϕi |
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k
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Equitable Coloring

Block Graphs
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Equitable Coloring

Unipolar graphs

A graph G is unipolar if it has a clique Q such that G − Q is a disjoint
union of cliques.

v1 v2

v3 v4

v5 v6
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Equitable Coloring

A max-flow based algorithm

v1 v2

v3 v4

v5 v6

s t

c1

c2

w11

w12

w21

w22

v3

v4

v5

v6

Vertices

Source s, sink t, for each color i , ci , for each color i and clique j , wij , for
vertex v` /∈ Q, v`.

Each flow unit gives the color of one vertex. Solid arcs have unit capacity.
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Parameterized Complexity

Parameterized Complexity
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Parameterized Complexity

The parameterized story so far...

Class Parameterized Complexity
Bipartite paraNP-hard parameterized by #colors
Cographs W[1]-hard parameterized by #colors
Chordal W[1]-hard parameterized by #colors
Block ?
Disjoint union of Split ?
K1,4-free interval ?
Independent set +kv FPT
Split +kv W[1]-hard parameterized by k
Disjoint Union of Cliques +kv ?
Complete Multipartite +kv ?
Forest +kv W[1]-hard parameterized by k+ #colors
Path +kv ?
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Parameterized Complexity

In this talk

Class Parameterized Complexity
Bipartite paraNP-hard param. by #colors
Cographs W[1]-hard param. by #colors
Chordal W[1]-hard param. by #colors
Block W[1]-hard param. by #colors + treedepth
Disjoint union of Split W[1]-hard param. by #colors + tw
Interval W[1]-hard param. by #colors + bandwidth
Independent set +kv FPT
Split +kv W[1]-hard param. by k
Cluster +kv FPT param. by k
Co-cluster +kv FPT param. by k
Forest +kv W[1]-hard param. by k + #colors
Path +kv W[1]-hard param. by k + #colors

Bin-packing is W[1]-hard parameterized by #bins.
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Parameterized Complexity Hardness results

Disjoint union of split graphs (complete p-partite)

Theorem
Equitable Coloring of disjoint union of split graphs is W[1]-hard
when parameterized by number of colors and treewidth.

Each aj becomes a split graph
with k − 1 vertices in the clique
and aj + 1 vertices in the
independent set (key vertices).

|V (G)| =∑
aj∈A(k−1)+(aj +1) = k(n+B).

Try equitably k-color it.
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Parameterized Complexity Hardness results

K1,r -free interval graphs

Theorem
Equitable Coloring of K1,r -free interval graphs is W[1]-hard when
parameterized by number of colors, treewidth and maximum degree if
r ≥ 4, otherwise it is solvable in polynomial time (consequence of de
Werra’85).

Each aj becomes a sequence of aj
cliques of size k − 1. Add one
universal vertex to each pair of
consecutive cliques. Said vertex
also has an extra clique of size
k − 1 attached to it.

|V (G)| =
∑

aj∈A aj(k−1) + ajk =
k(2kB − B).
Again, try to equitably k-color G .

k = 3 aj = 2
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Parameterized Complexity FPT algorithms

Cluster +kv

G is a cluster graph if each of its connected components is a clique
(cluster).

U

G is a cluster +kv graph if there is a set U ⊂ V (G) of size k such that
G − U is a cluster graph, with clusters {C1, . . . ,C`}.
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Parameterized Complexity FPT algorithms

Cluster +kv : max-flow again

v1 v2
v7

v3 v4

v5 v6

s t

c1

c2

w11

w12

w21

w22

v3

v4

v5

v6

Algorithm

For each of the kk colorings of U, construct the auxiliary graph. Take into
account the #times color i was used in U on the capacity of the (s, ci )
arcs.
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Parameterized Complexity FPT algorithms

Parameterized landscape
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Thank you!

Thank you!
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