Finite Coverings

A Journey through Groups, Loops, Rings, and Semigroups.

Luise-Charlotte Kappe
Binghamton University menger@math.binghamton.edu

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Claim

No group is the union of two proper subgroups.

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Claim

No group is the union of two proper subgroups.

Proof.

Suppose A, B are proper subgroups of G with $G=A \cup B$. Then there exist $a \in A$ and $b \in B$ with $a \notin B$ and $b \notin A$.

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Claim

No group is the union of two proper subgroups.

Proof.

Suppose A, B are proper subgroups of G with $G=A \cup B$. Then there exist $a \in A$ and $b \in B$ with $a \notin B$ and $b \notin A$.
We have $a b \in G$. So $a b \in A$ or $a b \in B$.

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Claim

No group is the union of two proper subgroups.

Proof.

Suppose A, B are proper subgroups of G with $G=A \cup B$. Then there exist $a \in A$ and $b \in B$ with $a \notin B$ and $b \notin A$.
We have $a b \in G$. So $a b \in A$ or $a b \in B$.
If $a b \in A$, then $a^{-1}(a b)=b \in A$, a contradiction.

Definition

A group is said to have a finite covering by subgroups if it is the union of finitely many proper subgroups.

Claim

No group is the union of two proper subgroups.

Proof.

Suppose A, B are proper subgroups of G with $G=A \cup B$. Then there exist $a \in A$ and $b \in B$ with $a \notin B$ and $b \notin A$.
We have $a b \in G$. So $a b \in A$ or $a b \in B$.
If $a b \in A$, then $a^{-1}(a b)=b \in A$, a contradiction.
Similarly, if $a b \in B$.
Our claim follows.

Theorem

A group is the union of finitely many proper subgroups if and only if it has a finite noncyclic homomorphic image.

Theorem

A group is the union of finitely many proper subgroups if and only if it has a finite noncyclic homomorphic image.
B.H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954) 227-242.

Definition

A group is a nonempty set with a binary operation $G \times G \rightarrow G$, satisfying the following conditions:

Definition

A group is a nonempty set with a binary operation $G \times G \rightarrow G$, satisfying the following conditions:
$(G) \begin{cases}(1) & \text { associative; } \\ (2) & \text { identity } 1 \cdot a=a \cdot 1=a ; \\ (3) & \text { for } a, b \in G \text { exist unique } \\ & x, y \in G \text { with } x a=b \text { and } a y=b .\end{cases}$

Definition

A group is a nonempty set with a binary operation $G \times G \rightarrow G$, satisfying the following conditions:
(G) $\begin{cases}(1) & \text { associative; } \\ (2) & \text { identity } 1 \cdot a=a \cdot 1=a ; \\ (3) & \text { for } a, b \in G \text { exist unique } \\ & x, y \in G \text { with } x a=b \text { and } a y=b .\end{cases}$

Loop $=(G)-(1) ;$ Quasigroup $=(G)-(1)-(2)$.

Definition

A group is a nonempty set with a binary operation $G \times G \rightarrow G$, satisfying the following conditions:
(G) $\begin{cases}(1) & \text { associative; } \\ (2) & \text { identity } 1 \cdot a=a \cdot 1=a ; \\ (3) & \text { for } a, b \in G \text { exist unique } \\ & x, y \in G \text { with } x a=b \text { and } a y=b .\end{cases}$

Loop $=(G)-(1) ;$ Quasigroup $=(G)-(1)-(2)$.
Semigroup $=(G)-(2)-(3)$;
Monoid $=(G)-(3)$.

Exercise

No loop is the union of two proper subloops.

Exercise

No loop is the union of two proper subloops.

Example

Let $S=\mathbb{N}$, the set of natural numbers under multiplication, and \mathbb{O} and \mathbb{E} the semigroups of odd and even integers. Then $\mathbb{N}=\mathbb{O} \cup \mathbb{E}$.

Definition

Let R be a nonempty set with two binary operations, addition " + " and multiplication ".". Then R is a ring if

Definition

Let R be a nonempty set with two binary operations, addition " + " and multiplication ".". Then R is a ring if
(1) R is a commutative (abelian) group with respect to addition;

Definition

Let R be a nonempty set with two binary operations, addition " + " and multiplication ".". Then R is a ring if
(1) R is a commutative (abelian) group with respect to addition;
(2) the multiplication is associative;

Definition

Let R be a nonempty set with two binary operations, addition " + " and multiplication ".". Then R is a ring if
(1) R is a commutative (abelian) group with respect to addition;
(2) the multiplication is associative;
(3) the two operations are distributive, i.e.

$$
a(b+c)=a b+a c \quad \text { and } \quad(a+b) c=a c+b c
$$

Definition

Let R be a nonempty set with two binary operations, addition " + " and multiplication ".". Then R is a ring if
(1) R is a commutative (abelian) group with respect to addition;
(2) the multiplication is associative;
(3) the two operations are distributive, i.e.

$$
a(b+c)=a b+a c \quad \text { and } \quad(a+b) c=a c+b c
$$

Theorem

No ring is the union of two proper subrings.
G. Scorza, Gruppi che possone come somma di tre sotto gruppi, Boll. Un. Mat. Ital. 5 (1926), 216-218.
G. Scorza, Gruppi che possone come somma di tre sotto gruppi, Boll. Un. Mat. Ital. 5 (1926), 216-218.

Theorem

For a group G we have $\sigma(G)=3$ if and only if G has a homomorphic image isomorphic to the Klein 4-group.
J.E.H. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.
J.E.H. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.

Question

Given a group G with a finite covering, what is the minimum number $\sigma(G)$ of subgroups needed to cover G ?
J.E.H. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.

Question

Given a group G with a finite covering, what is the minimum number $\sigma(G)$ of subgroups needed to cover G ?

Conjecture

For a non-cyclic solvable group, the covering number has the form "prime power plus one".
J.E.H. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.

Question

Given a group G with a finite covering, what is the minimum number $\sigma(G)$ of subgroups needed to cover G ?

Conjecture

For a non-cyclic solvable group, the covering number has the form "prime power plus one".

Gives examples of solvable groups with $\sigma(G)=p^{\alpha}+1$ for all $p^{\alpha}+1$ and shows $\sigma\left(A_{5}\right)=10, \sigma\left(S_{5}\right)=16$.
M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189-198.
M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189-198.

Theorem

Let G be a finite solvable group and let p^{α} be the order of the smallest chief factor having more than one complement. Then $\sigma(G)=p^{\alpha}+1$.
M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189-198.

Theorem

Let G be a finite solvable group and let p^{α} be the order of the smallest chief factor having more than one complement. Then $\sigma(G)=p^{\alpha}+1$.

Theorem

There exists no group G with $\sigma(G)=7$.
M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189-198.

Theorem

Let G be a finite solvable group and let p^{α} be the order of the smallest chief factor having more than one complement. Then $\sigma(G)=p^{\alpha}+1$.

Theorem

There exists no group G with $\sigma(G)=7$.

Conjecture

There exist no groups with
$\sigma(G)=11,13$ or 15 .
R.A. Bryce, V. Fedri, and L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60 (1999), 227-238.
R.A. Bryce, V. Fedri, and L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60 (1999), 227-238.

Theorem

There exists a group G with $\sigma(G)=15$, namely $G \cong \operatorname{PSL}(2,7)$.
A. Abdollahi, F. Ashraf and S.M. Shaker, The symmetric group of degree six can be covered by 13 and no fewer subgroups, Bull. Malays. Math. Sci. Soc. 30 (2007), 57-58.
A. Abdollahi, F. Ashraf and S.M. Shaker, The symmetric group of degree six can be covered by 13 and no fewer subgroups, Bull. Malays. Math. Sci. Soc. 30 (2007), 57-58.
E. Detomi and A. Lucchini, On the structure of primitive n-sum groups, CUBO, A Mathematical Journal, 10 (2008), 195-210.
A. Abdollahi, F. Ashraf and S.M. Shaker, The symmetric group of degree six can be covered by 13 and no fewer subgroups, Bull. Malays. Math. Sci. Soc. 30 (2007), 57-58.
E. Detomi and A. Lucchini, On the structure of primitive n-sum groups, CUBO, A Mathematical Journal, 10 (2008), 195-210.

Theorem
There exists no group with $\sigma(G)=11$.

Methods used by Tomkinson, Detomi and Lucchini

"Assume to the contrary that there exists a group with covering number n ... and come up with a contradiction."

Methods used by Tomkinson, Detomi and Lucchini

"Assume to the contrary that there exists a group with covering number n ... and come up with a contradiction."

New method

Find complement, i.e. all integers n which are covering numbers.
M. Garonzi, Finite groups that are the union of at most 25 proper subgroups, J. of Algebra and its Applications, 12 (2013), 1-10.
M. Garonzi, Finite groups that are the union of at most 25 proper subgroups, J. of Algebra and its Applications, 12 (2013), 1-10.

Theorem

There exists no group G with $\sigma(G)=19,21,22$, or 25 .
M. Garonzi, Finite groups that are the union of at most 25 proper subgroups, J. of Algebra and its Applications, 12 (2013), 1-10.

Theorem

There exists no group G with $\sigma(G)=19,21,22$, or 25 .

$\sigma(G)$	2	7	11	13	15	16	19	21	22	23	25
\emptyset	\emptyset	\emptyset	\emptyset	S_{6}	$\operatorname{PSL}(2,7)$	S_{5}, A_{6}	\emptyset	\emptyset	\emptyset	M_{11}	\emptyset

Observation

For $2 \leq n \leq 18$ there are only three integers which are not covering numbers, that is around 18%.

Observation

For $2 \leq n \leq 18$ there are only three integers which are not covering numbers, that is around 18%.

Question

Are there infintely many integers which are not covering numbers?

Observation

For $2 \leq n \leq 18$ there are only three integers which are not covering numbers, that is around 18%.

Question

Are there infintely many integers which are not covering numbers?

New results

For $2 \leq n \leq 129$ around 50% of the integers are not covering numbers.

Observation

For $2 \leq n \leq 18$ there are only three integers which are not covering numbers, that is around 18%.

Question

Are there infintely many integers which are not covering numbers?

New results

For $2 \leq n \leq 129$ around 50% of the integers are not covering numbers.

Conjecture

There are infinitely many integers which are not covering numbers.

Observation

For $2 \leq n \leq 18$ there are only three integers which are not covering numbers, that is around 18%.

Question

Are there infintely many integers which are not covering numbers?

New results

For $2 \leq n \leq 129$ around 50% of the integers are not covering numbers.

Conjecture

There are infinitely many integers which are not covering numbers.
M. Garonzi, L.-C. Kappe, E. Swartz, On integers that are covering numbers, submitted.

Some Definitions:

Some Definitions:

- A finite group is σ-elementary if $\sigma(G)<\sigma(G / N)$ for every nontrivial normal subgroup N of G with the convention that $\sigma(G)=\infty$ if G is cyclic.

Some Definitions:

- A finite group is σ-elementary if $\sigma(G)<\sigma(G / N)$ for every nontrivial normal subgroup N of G with the convention that $\sigma(G)=\infty$ if G is cyclic.
- A finite group is said to be monolithic if it admits a unique minimal normal subgroup.

Some Definitions:

- A finite group is σ-elementary if $\sigma(G)<\sigma(G / N)$ for every nontrivial normal subgroup N of G with the convention that $\sigma(G)=\infty$ if G is cyclic.
- A finite group is said to be monolithic if it admits a unique minimal normal subgroup.
- A finite group is said to be primitive if it admits a maximal subgroup M such that $M_{G}=\bigcap g^{-1} M g$, the normal core of M, is trivial. The $g \in G$ index $[G: M]$ is called the primitivity degree of G with respect to M.

Theorem (GKS (2017+))

Let G be a nonabelian σ-elementary group with $\sigma(G) \leq 129$. Then G is primitive and monolithic with degree of primitivity at most 129, and the smallest degree of primitivity of G is at most $\sigma(G)$.

Theorem (GKS (2017+))

Let G be a nonabelian σ-elementary group with $\sigma(G) \leq 129$. Then G is primitive and monolithic with degree of primitivity at most 129, and the smallest degree of primitivity of G is at most $\sigma(G)$.

Remark

Reduction says we need "only" check primitive monolithic groups up to degree 129. (Counting repeats, over 700 nonsolvable groups.)

Theorem (GKS (2017+))

Let G be a nonabelian σ-elementary group with $\sigma(G) \leq 129$. Then G is primitive and monolithic with degree of primitivity at most 129, and the smallest degree of primitivity of G is at most $\sigma(G)$.

Remark

Reduction says we need "only" check primitive monolithic groups up to degree 129. (Counting repeats, over 700 nonsolvable groups.)

Conjecture

Every nonabelian σ-elementary group is a monolithic primitive group.

Theorem (GKS (2017+))

Let G be a nonabelian σ-elementary group with $\sigma(G) \leq 129$. Then G is primitive and monolithic with degree of primitivity at most 129, and the smallest degree of primitivity of G is at most $\sigma(G)$.

Remark

Reduction says we need "only" check primitive monolithic groups up to degree 129. (Counting repeats, over 700 nonsolvable groups.)

Conjecture

Every nonabelian σ-elementary group is a monolithic primitive group.
E. Detomi and A. Lucchini, On the structure of primitive n-sum groups, CUBO, 10 (2008), 195-210.

New results

New results

Theorem (Garonzi, Kappe, Swartz (2017+))

The integers between 26 and 129 which are not covering numbers are 27, $34,35,37,39,41,43,45,47,49,51,52,53,55,56,58,59,61,66,69$, $70,75,76,77,78,79,81,83,87,88,89,91,93,94,95,96,97,99,100$, $101,103,105,106,107,109,111,112,113,115,116,117,118,119,120$, 123, 124, 125.

New results

Theorem (Garonzi, Kappe, Swartz (2017+))

The integers between 26 and 129 which are not covering numbers are 27, $34,35,37,39,41,43,45,47,49,51,52,53,55,56,58,59,61,66,69$, $70,75,76,77,78,79,81,83,87,88,89,91,93,94,95,96,97,99,100$, $101,103,105,106,107,109,111,112,113,115,116,117,118,119,120$, 123, 124, 125.

Theorem (GKS (2017+))

Let $q=p^{d}$ be a prime power and $n \geq 2, n \neq 3$ be a positive integer. Then $\left(q^{n}-1\right) /(q-1)$ is a covering number.

- List of groups with primitivity degree n produced by GAP.
- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- Exact values are desirable; sometimes lower bounds suffice.
- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- Exact values are desirable; sometimes lower bounds suffice.

Main tools:

- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- Exact values are desirable; sometimes lower bounds suffice.

Main tools:

- known formulas/asymptotic results
- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- Exact values are desirable; sometimes lower bounds suffice.

Main tools:

- known formulas/asymptotic results
- linear programming (GAP, then Gurobi)
- List of groups with primitivity degree n produced by GAP.
- We need to study the covering numbers of primitive groups of "small" degree.
- Exact values are desirable; sometimes lower bounds suffice.

Main tools:

- known formulas/asymptotic results
- linear programming (GAP, then Gurobi)
- "greedy" search for "hardest to cover" conjugacy classes

Expansion beyond 129?

Expansion beyond 129 ?

- Prove conjecture about structure of σ-elementary groups or expand bound for which conjecture holds beyond 129.

Expansion beyond 129 ?

- Prove conjecture about structure of σ-elementary groups or expand bound for which conjecture holds beyond 129.
- Requires new methods for determining covering numbers of groups.

The covering number of rings

The covering number of rings

A. Lucchini and A. Maróti, Rings as the union of proper subrings, Algebras and Representation Theory, 15 (2012), 1035-1047.

The covering number of rings

A. Lucchini and A. Maróti, Rings as the union of proper subrings, Algebras and Representation Theory, 15 (2012), 1035-1047.

Theorem

A ring is the union of three proper subrings if and only if R has a factor ring (of order 4 or 8) isomorphic to five types of rings.

Nicholas J. Werner, Covering Numbers of Finite Rings, American Mathematical Monthly, 122 (2015), 552-556.

Nicholas J. Werner, Covering Numbers of Finite Rings, American Mathematical Monthly, 122 (2015), 552-556.

Notation

$\mathbb{F}_{p}, \mathbb{F}_{q}$ finite fields of order p and q, where $q=p^{\alpha}, p$ a prime, $\alpha \in \mathbb{N}$.

Some Observations:

Some Observations:

$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering.

Some Observations:

$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering. $\mathbb{F}_{2} \times \mathbb{F}_{2}$ has a finite covering, in fact $\sigma\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=3$.

Some Observations:

$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering. $\mathbb{F}_{2} \times \mathbb{F}_{2}$ has a finite covering, in fact $\sigma\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=3$.
Questions

Some Observations:

$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering.
$\mathbb{F}_{2} \times \mathbb{F}_{2}$ has a finite covering, in fact $\sigma\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=3$.
Questions

- What about $\mathbb{F}_{p} \times \mathbb{F}_{p}, p>2$? $\mathbb{F}_{p} \times \mathbb{F}_{p}$ has no finite covering for $p>2$.

Some Observations:

$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering.
$\mathbb{F}_{2} \times \mathbb{F}_{2}$ has a finite covering, in fact $\sigma\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=3$.
Questions

- What about $\mathbb{F}_{p} \times \mathbb{F}_{p}, p>2$? $\mathbb{F}_{p} \times \mathbb{F}_{p}$ has no finite covering for $p>2$.
- What about $\mathbb{F}_{2} \times \mathbb{F}_{4}$? $\mathbb{F}_{2} \times \mathbb{F}_{4}$ has no finite covering.

Some Observations:
$\mathbb{F}_{p}, \mathbb{F}_{q}$ have no finite covering.
$\mathbb{F}_{2} \times \mathbb{F}_{2}$ has a finite covering, in fact $\sigma\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=3$.
Questions

- What about $\mathbb{F}_{p} \times \mathbb{F}_{p}, p>2$? $\mathbb{F}_{p} \times \mathbb{F}_{p}$ has no finite covering for $p>2$.
- What about $\mathbb{F}_{2} \times \mathbb{F}_{4}$? $\mathbb{F}_{2} \times \mathbb{F}_{4}$ has no finite covering.

Theorem

Let p be a prime and $R=\sum_{i=1}^{t} \mathbb{F}_{p}$, the direct sum of t copies of \mathbb{F}_{p}. Then
R has a finite covering if and only if $t \geq p$ and $\sigma(R)=p+\binom{p}{2}$.

- There are rings R with $3 \leq \sigma(R) \leq 12$, in particular, there are rings R with $\sigma(R)=7$ and $\sigma(R)=11$.
- There are rings R with $3 \leq \sigma(R) \leq 12$, in particular, there are rings R with $\sigma(R)=7$ and $\sigma(R)=11$.
- Is there a ring with $\sigma(R)=13$?

The covering number of semigroups

The covering number of semigroups

Theorem

Let S be a finite semigroup not generated by a single element. Then $\sigma(S)=2$, if S is not a group.

The covering number of semigroups

Theorem

Let S be a finite semigroup not generated by a single element. Then $\sigma(S)=2$, if S is not a group.
C. Donoven and L.-C. Kappe, On the covering number of semigroups, in preparation.

The covering number of loops

The covering number of loops

S.M. Gagola III and L.C. Kappe, On the covering number of loops, Expositiones Mathematica, 34, (2016) 436-447.

The covering number of loops

S.M. Gagola III and L.C. Kappe, On the covering number of loops, Expositiones Mathematica, 34, (2016) 436-447.

Theorem

For every integer $n>2$ there exists a loop L with $\sigma(L)=n$.

The covering number of loops

S.M. Gagola III and L.C. Kappe, On the covering number of loops, Expositiones Mathematica, 34, (2016) 436-447.

Theorem

For every integer $n>2$ there exists a loop L with $\sigma(L)=n$.

Proposition

For every integer $n>2$, there exists an idempotent quasigroup \mathcal{Q}_{n} of order n such that any two distinct elements generate \mathcal{Q}_{n}.

Definition of the loop $\mathcal{L}^{(n)}(\mathbb{F})$

Let \mathbb{F} be a field with multiplicative group \mathbb{F}^{*} and

$$
\mathcal{L}^{(n)}(\mathbb{F})=\left\{a_{i}(x) \mid x \in \mathbb{F}^{*}, i \in \mathcal{Q}_{n}\right\} \cup\{\mathbf{1}\} .
$$

Definition of the loop $\mathcal{L}^{(n)}(\mathbb{F})$

Let \mathbb{F} be a field with multiplicative group \mathbb{F}^{*} and

$$
\mathcal{L}^{(n)}(\mathbb{F})=\left\{a_{i}(x) \mid x \in \mathbb{F}^{*}, i \in \mathcal{Q}_{n}\right\} \cup\{\mathbf{1}\} .
$$

A binary operation on $\mathcal{L}^{(n)}(\mathbb{F})$ is defined as follows:
(i) For any $I \in \mathcal{L}^{(n)}(\mathbb{F}), \mathbf{1} I=I \cdot \mathbf{1}=I$;

Definition of the loop $\mathcal{L}^{(n)}(\mathbb{F})$

Let \mathbb{F} be a field with multiplicative group \mathbb{F}^{*} and

$$
\mathcal{L}^{(n)}(\mathbb{F})=\left\{a_{i}(x) \mid x \in \mathbb{F}^{*}, i \in \mathcal{Q}_{n}\right\} \cup\{\mathbf{1}\} .
$$

A binary operation on $\mathcal{L}^{(n)}(\mathbb{F})$ is defined as follows:
(i) For any $I \in \mathcal{L}^{(n)}(\mathbb{F}), \mathbf{1} I=I \cdot \mathbf{1}=I$;
(ii) For $x, y \in \mathbb{F}^{*}$ and $i \in \mathcal{Q}_{n}$,

$$
a_{i}(x) a_{i}(y)= \begin{cases}a_{i}(x+y) & \text { if } x+y \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Definition of the loop $\mathcal{L}^{(n)}(\mathbb{F})$

Let \mathbb{F} be a field with multiplicative group \mathbb{F}^{*} and

$$
\mathcal{L}^{(n)}(\mathbb{F})=\left\{a_{i}(x) \mid x \in \mathbb{F}^{*}, i \in \mathcal{Q}_{n}\right\} \cup\{\mathbf{1}\} .
$$

A binary operation on $\mathcal{L}^{(n)}(\mathbb{F})$ is defined as follows:
(i) For any $I \in \mathcal{L}^{(n)}(\mathbb{F}), \mathbf{1} I=I \cdot \mathbf{1}=I$;
(ii) For $x, y \in \mathbb{F}^{*}$ and $i \in \mathcal{Q}_{n}$,

$$
a_{i}(x) a_{i}(y)= \begin{cases}a_{i}(x+y) & \text { if } x+y \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

(iii) For $x, y \in \mathbb{F}^{*}$ and $i, j \in \mathcal{Q}_{n}$ with $i \neq j$,

$$
a_{i}(x) a_{j}(y)=a_{i * j}(x y)
$$

