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Definition
A group is said to have a finite covering by subgroups if it is the union of
finitely many proper subgroups.

Claim
No group is the union of two proper subgroups.

Proof.
Suppose A, B are proper subgroups of G with G = A ∪ B. Then there
exist a ∈ A and b ∈ B with a 6∈ B and b 6∈ A.
We have ab ∈ G . So ab ∈ A or ab ∈ B.
If ab ∈ A, then a−1(ab) = b ∈ A, a contradiction.
Similarly, if ab ∈ B.
Our claim follows.
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Theorem
A group is the union of finitely many proper subgroups if and only if it has
a finite noncyclic homomorphic image.

B.H. Neumann, Groups covered by finitely many cosets, Publ. Math.
Debrecen 3 (1954) 227-242.
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Definition
A group is a nonempty set with a binary operation G × G → G , satisfying
the following conditions:

(G )


(1) associative;
(2) identity 1 · a = a · 1 = a;
(3) for a, b ∈ G exist unique

x , y ∈ G with xa = b and ay = b.

Loop = (G )− (1); Quasigroup = (G )− (1)− (2).
Semigroup = (G )− (2)− (3);
Monoid = (G )− (3).
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Exercise
No loop is the union of two proper subloops.

Example
Let S = N, the set of natural numbers under multiplication, and O and E
the semigroups of odd and even integers. Then N = O ∪ E.
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Definition
Let R be a nonempty set with two binary operations, addition “+” and
multiplication “·”. Then R is a ring if

(1) R is a commutative (abelian) group with respect to addition;
(2) the multiplication is associative;
(3) the two operations are distributive, i.e.

a(b + c) = ab + ac and (a + b)c = ac + bc.

Theorem
No ring is the union of two proper subrings.
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G. Scorza, Gruppi che possone come somma di tre sotto gruppi, Boll. Un.
Mat. Ital. 5 (1926), 216-218.

Theorem
For a group G we have σ(G ) = 3 if and only if G has a homomorphic
image isomorphic to the Klein 4-group.
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J.E.H. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.

Question
Given a group G with a finite covering, what is the minimum number
σ(G ) of subgroups needed to cover G?

Conjecture
For a non-cyclic solvable group, the covering number has the form “prime
power plus one”.

Gives examples of solvable groups with
σ(G ) = pα + 1 for all pα + 1 and shows
σ(A5) = 10, σ(S5) = 16.
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M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand.
81 (1997), 189-198.

Theorem
Let G be a finite solvable group and let pα be the order of the smallest
chief factor having more than one complement. Then σ(G ) = pα + 1.

Theorem
There exists no group G with σ(G ) = 7.

Conjecture
There exist no groups with
σ(G ) = 11, 13 or 15.
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R.A. Bryce, V. Fedri, and L. Serena, Subgroup coverings of some linear
groups, Bull. Austral. Math. Soc. 60 (1999), 227-238.

Theorem
There exists a group G with σ(G ) = 15, namely G ∼= PSL(2, 7).
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A. Abdollahi, F. Ashraf and S.M. Shaker, The symmetric group of degree
six can be covered by 13 and no fewer subgroups, Bull. Malays. Math. Sci.
Soc. 30 (2007), 57-58.

E. Detomi and A. Lucchini, On the structure of primitive n-sum groups,
CUBO, A Mathematical Journal, 10 (2008), 195-210.

Theorem
There exists no group with σ(G ) = 11.
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Methods used by Tomkinson, Detomi and Lucchini
“Assume to the contrary that there exists a group with covering number n
... and come up with a contradiction.”

New method
Find complement, i.e. all integers n which are covering numbers.
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M. Garonzi, Finite groups that are the union of at most 25 proper
subgroups, J. of Algebra and its Applications, 12 (2013), 1-10.

Theorem
There exists no group G with σ(G ) = 19, 21, 22, or 25.

σ(G ) 2 7 11 13 15 16 19 21 22 23 25
∅ ∅ ∅ ∅ S6 PSL(2,7) S5,A6 ∅ ∅ ∅ M11 ∅
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Observation
For 2 ≤ n ≤ 18 there are only three integers which are not covering
numbers, that is around 18%.

Question
Are there infintely many integers which are not covering numbers?

New results
For 2 ≤ n ≤ 129 around 50% of the integers are not covering numbers.

Conjecture
There are infinitely many integers which are not covering numbers.

M. Garonzi, L.-C. Kappe, E. Swartz, On integers that are covering
numbers, submitted.
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Some Definitions:

A finite group is σ-elementary if σ(G ) < σ(G/N) for every nontrivial
normal subgroup N of G with the convention that σ(G ) =∞ if G is
cyclic.
A finite group is said to be monolithic if it admits a unique minimal
normal subgroup.
A finite group is said to be primitive if it admits a maximal subgroup
M such that MG =

⋂
g∈G

g−1Mg , the normal core of M, is trivial. The

index [G : M] is called the primitivity degree of G with respect to M.
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Theorem (GKS (2017+))
Let G be a nonabelian σ-elementary group with σ(G ) ≤ 129. Then G is
primitive and monolithic with degree of primitivity at most 129, and the
smallest degree of primitivity of G is at most σ(G ).

Remark
Reduction says we need “only” check primitive monolithic groups up to
degree 129. (Counting repeats, over 700 nonsolvable groups.)

Conjecture
Every nonabelian σ-elementary group is a monolithic primitive group.

E. Detomi and A. Lucchini, On the structure of primitive n-sum groups,
CUBO, 10 (2008), 195-210.
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New results

Theorem (Garonzi, Kappe, Swartz (2017+))
The integers between 26 and 129 which are not covering numbers are 27,
34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 52, 53, 55, 56, 58, 59, 61, 66, 69,
70, 75, 76, 77, 78, 79, 81, 83, 87, 88, 89, 91, 93, 94, 95, 96, 97, 99, 100,
101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120,
123, 124, 125.

Theorem (GKS (2017+))
Let q = pd be a prime power and n ≥ 2, n 6= 3 be a positive integer. Then
(qn − 1)/(q − 1) is a covering number.
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List of groups with primitivity degree n produced by GAP.

We need to study the covering numbers of primitive groups of
“small” degree.
Exact values are desirable; sometimes lower bounds suffice.

Main tools:
known formulas/asymptotic results
linear programming (GAP, then Gurobi)
“greedy” search for “hardest to cover” conjugacy classes
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Expansion beyond 129?

Prove conjecture about structure of σ-elementary groups or expand
bound for which conjecture holds beyond 129.
Requires new methods for determining covering numbers of groups.
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The covering number of rings

A. Lucchini and A. Maróti, Rings as the union of proper subrings, Algebras
and Representation Theory, 15 (2012), 1035-1047.

Theorem
A ring is the union of three proper subrings if and only if R has a factor
ring (of order 4 or 8) isomorphic to five types of rings.
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Nicholas J. Werner, Covering Numbers of Finite Rings, American
Mathematical Monthly, 122 (2015), 552-556.

Notation
Fp, Fq finite fields of order p and q, where q = pα, p a prime, α ∈ N.
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Some Observations:

Fp, Fq have no finite covering.
F2 × F2 has a finite covering, in fact σ(F2 × F2) = 3.
Questions

What about Fp × Fp, p > 2? Fp × Fp has no finite covering for
p > 2.
What about F2 × F4? F2 × F4 has no finite covering.

Theorem

Let p be a prime and R =
t∑

i=1
Fp, the direct sum of t copies of Fp. Then

R has a finite covering if and only if t ≥ p and σ(R) = p +
(
p

2

)
.
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There are rings R with 3 ≤ σ(R) ≤ 12, in particular, there are rings R
with σ(R) = 7 and σ(R) = 11.

Is there a ring with σ(R) = 13?
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The covering number of semigroups

Theorem
Let S be a finite semigroup not generated by a single element. Then
σ(S) = 2, if S is not a group.

C. Donoven and L.-C. Kappe, On the covering number of semigroups, in
preparation.
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The covering number of loops

S.M. Gagola III and L.C. Kappe, On the covering number of loops,
Expositiones Mathematica, 34, (2016) 436-447.

Theorem
For every integer n > 2 there exists a loop L with σ(L) = n.

Proposition
For every integer n > 2, there exists an idempotent quasigroup Qn of
order n such that any two distinct elements generate Qn.
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Definition of the loop L(n)(F)
Let F be a field with multiplicative group F∗ and

L(n)(F) = {ai (x) | x ∈ F∗, i ∈ Qn} ∪ {1}.

A binary operation on L(n)(F) is defined as follows:
(i) For any l ∈ L(n)(F), 1l = l · 1 = l ;
(ii) For x , y ∈ F∗ and i ∈ Qn,

ai (x)ai (y) =
{
ai (x + y) if x + y 6= 0,
1 otherwise;

(iii) For x , y ∈ F∗ and i , j ∈ Qn with i 6= j ,

ai (x)aj(y) = ai∗j(xy).
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