Uses and applications of
randomness

The built of a secure and trustable source of random number generator

RSN
S

55
BRE e
By
RS

2iEE

/i

BBl

S

S5

3

s
5

2

R
TR
SAEEES

B

iy
A

First of all: what is a random event

A mathematical definition: A pratical definition:
The output of a probabilistic experiment Anything that appears to be random
LAl [cfo]eE]
The output is... J“Eé

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

 Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

 Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Wher A~ rin llﬁ&r’\mt\f:f‘

-

e Games

e Selectic

”,
- e/
- /."
.

* Compu h

e Test of

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

 Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Wh E 0 CASO DO AECIO NEVES
NO STF VAIPARA...

Nao sei
como Deus colocou
este nome ai...

e Test

Charge de Mario César - masguemarionet

* Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

* Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, ca:=; -
* Selection of judge:.}
 Computer simulat °

-
* Test of hypotheses =
« Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

 Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, cassino, bingo...

riee

Treatment

"H‘W’II"IP

Follov

e Seleg _study Population

peeee
e (LD
*Test«

* Computer security: key generation, nonces,...

Where

ANAOMNES
* Games, |
* Selectio
* Compute N /
* Test of h

» Computer security: key generation, nonces,...

Where do we use randomness

* Games, lottery, cassino, bingo...

 Selection of judges and jurors

 Computer simulations

* Test of hypotheses - randomized controlled trial

 Computer security: key generation, nonces,...

Why randomness in the industry

* Current industrial plants are complex computer systems...
.. and vulnerable to the same kind of attacks

ERP-Level
;-\\ Enterprise

Resources

To services
gf

<

§ [.‘_-n,’: YIS 7 "““'..'_.n».: V. .
BIRD
b3 Uit [arsm— i3} Manu?actunng

Execution System
control r0M p 18377 xx.x :

D Control-Level
Via data éa |i|WW| A (SRR achino convollr

S I e e R S T ey S
rofinet, E 'CAT,
> =~ . b ety 2 A 440

- ﬁ

M (F, |) ‘' Device-Level
From & UMTS . / Sensor-Actor
signhals _JB ’ Machine
. #
: s
osm mamtanancc logistics manufacturing s? 'a

|'
g"

Why randomness in the industry

* Current industrial plants are complex computer systems...
... and vulnerable to the same kind of attacks

] Worl Wireless
InternetAWAN) JRTU/
\\ | PLC/IED.
(__Fewo Comm Bus .~
A < e ns |
S

o
4 o
il <
x ° ~
1 []
g.
["
]

In practice: how do we get random numbers?

 Step 1: find a “good” source of "physical” randomness

* Show that your source is unpredictable (in practice) and has no patterns
 Statistic tests, implementation analysis

* |f you have a quantum source, great!
e If you can prove quantumness, explendid! (Bell tests!)

e Step 2: post-process the obtained numbers using a PRNG
e Simple way to get uniform distribuitions frmo non-uniform ones

int getRandomNumber ()

return 4. // chosen by fair dice roll.
J/ Quaranteed to be random.

Attacks on random numbers

* Critical activities dependent on good random numbers

e Attacks to random number generators
* Netscape SSL

Microsoft Windows 2000/XP

MIFARE NXP CRYPTO-1

Android Bitcoins

Playstation 3

NIST SP 800-90

* Poor randomness can have critical impact!

Cryptanalysis of the Random Number Generator of the Windows
Operating System

Leo Dorrendorf
School of Engineering and Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
dorrel@cs. huji.ac.il

d(

Android bug batters Bitcoin wallets

Old flaw, new problem

By Richard Chirgwin 12 Aug 2013 at 00:43 9] SHAREY

Zvi Gutterman
School of Engineering and Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
zvikag@cs.huji.ac.il

Benny Pinkas®
Department of Computer Science
University of Haifa
31905 Haifa, Israel
benny@pinkas.net

November 4, 2007

Abstract

The pseudo-random number generator (PRNG) used by the Windows operating system is
the most commonly used PRNG. The pseudo-randomness of the output of this generator is
crucial for the security of almost any application running in Windows. Nevertheless, its exact
algorithm was never published.

We examined the binary code of a distribution of Windows 2000, which is still the second
most popular operating system after Windows XP. (This investigation was done without any

random number generator (namely, the function CryptGenRandon). We analyzed the security
of the algorithm and found a non-trivial attack: given the internal state of the generator, the
previous state can be computed in O(2%%) work (this is an attack on the forward-security of
the generator, an O(1) attack on backward security is trivial). The attack on forward-security
demonstrates that the design of the generator is flawed, since it is well known how to prevent
such attacks.

We also analyzed the way in which the generator is run by the operating system, and found

pe's In
ptscape w
d Netscap
pr UNIX 1
employec
, it's impa

help from Microsoft.) We reconstructed, for the first time, the algorithm used by the pseudo- Eust [hrce
ted.

[iable

Users of Android Bitcoin apps have woken to the unpleasant news that
an old pseudo random number generation bug has been exploited to
steal balances from users' wallets.

The Bitcoin Foundation's announcement, here, merely states that an
unspecified component of Android “responsible for generating secure
random numbers contains critical weaknesses, that render all Android
wallets generated to date vulnerable to theft.”

if its prog

re 2. Thij
cintosh v
operating

 algorithi
It process

| USENIX Security Sympaosium. San Jose, CA. 31 July 2008. |

Reverse-Engineering a Cryptographic RFID Tag

Karsten Nohl and David Evans Starbug and Henryk Plétz
University of Virginia Chaos Computer Club
Department of Compuier Science Berlin

{nohl,evans} @cs.virginia.edu starbug @ccc.de, henryk @ploetzli.ch

Abstract

The security of embedded devices often relies on the secrecy of proprietary cryptographic algorithms. These
algorithms and their weaknesses are frequently disclosed through reverse-engineering software, but it is
commonly thought to be too expensive to reconstruct designs from a hardware implementation alone. This
paper challenges that belief by presenting an approach to reverse-engineering a cipher from a silicon imple-
mentation. Using this mostly automated appmach we reveal a cipher from an RFID tag that is not known
to have a software or micro-code impl Wer t the cipher from the widely used Mifare
Classic RFID tag by using a combination of image analysis of circuits and protocol analysis. Our analysis re-
veals that the security of the tag is even below the level that its 48- bn kcy length wggcsls due to a number of
design flaws. Weak random numbers and a weakness in the auth 1 allow for pre-c d
rainbow tables to be used to find any key in a matter of seconds. Our ap, h of deducing functional-
ity from circuit images is mostly automated, hence it is also feasible for Iargc chips. The assumpuon that
algorithms can be kept secret should therefore to be avoided for any type of silicon chip.

1l faur qu’il n'exige pas le secret, e1 qu'il puisse sans inconvénient tomber entre les mains de I'ennemi.
{[A cipher] must not depend on secrecy, and it must not matter if it falls into enemy hands.)
August Kerckhoffs, La Cryprographie Militaire, January 1883 [13]

1 Introduction ture and were able to fill in the missing dezails through
cryptanalysis of the cipher output for known keys and
inputs. This black-box approach requires some prior un-
derstanding of the structure of a cipher and is only appli-
cable to ciphers with statistical weaknesses. The output
of a sound cipher should not be statistically biased and
therefore should not leak information about its structure.

It has long been recognized that security-through-obscur-
ity does not work. However, vendors continue to be-
lieve that 1f an cncr\pnon algorithm is mlcascd onlv as
ahard ion, then the
cipher from hardware alone is beyond the capabilities of
likc.ly adw:rsar.ics with]imiuu'i fur)ding and time. The bly of their software i . Such impl
design of the cipher analyzed in this paper, for example, tations can cither be found in compmcr software or as

Other ciphers have bccn disclosed through disassem-

that it amplifies
mode, and ther
initial values of
by whatever val
process runs a
system generate
it. The result of

Generator Recommendations

April 21, 2014

few
be used to learn

"Research supported

Following a public comment period and review, the National Institute of Standards and Technology

Before implementing the change, NIST is requesting final public comments on the revised document,

Recommendation for Random Number Generation Using Deterministic Random Bit Generators# (NIST
Special Publication 800-90A, Rev. 1).

The revised document retains three of the four previously available options for generating
pseudorandom bits needed to create secure cryptographic keys for encrypting data. It omits an
algorithm known as Dual_EC_DRBG, or Dual Elliptic Curve Deterministic Random Bit Generator. NIST
recommends that current users of Dual_EC_DRBG transition to one of the three remaining approved
algorithms as quickly as possible.

In September 2013, news reports prompted public concern about the trustworthiness of
Dual_EC_DRBG. As a result, NIST immediately recommended against the use of the algorithm and
reissued SP 800-90A for public comment.

NIST Removes Cryptography Algorithm from Random Number

(NIST) has removed a cryptographic algorithm from its draft guidance on random number generators.

Blog Newsletter

Blog >

& MEDIA CONTACT

Jennifer Huergo
jennifer.huergo@nist.gove
(301) 975-6343

pm attention to their random number generator.
EDITED TO ADD (1/13): More info.
453 ORGANIZATIONS
Information Technology Laboratory a I MW_S-M » 85 Comments

Computer Security Division

O EiLike

D W Tweet

Schneier on Security

Books

Sony PS3 Security Broken

Sony used an ECDSA signature scheme to protect the PS3. Trouble is, they didn't pay sufficient

CDL{A 1 &

Essays

had not been disclosed for 14 years despite more than a . de on a.n hedded ontroller. Cipbers
& (071 include the AS/1

he cryptography on
hown to be available
mentation; tags and
ptircly in hardware.

News Talks Academic About Me

proprictary cryptog-
on alone. Reverse-
when very little is
are implementation

Attacks on random numbers

* Critical activities dependent of good random numbers

e Attacks to random number generators
* Netscape SSL

Microsoft Windows 2000/XP

MIFARE NXP CRYPTO-1

Android Bitcoiins

Playstation 3

NIST SP 800-90

* Poor randomness can have critical impact!

Does randomness exist?

g F¥ I 44 4
Some definitions for the concept of “random
TOUR OF ACCOUNTING ARE
' initi OVER HER NINE NINE JOoU PROBLEM.
* A mathematical definition DYER HERE INE Moo SURE (JITH RAN-
ok RANDOM NUMBER \ RANDOM? 383"&‘;&5'
* The output of a probabilistic event jar CENERATOR. L o NEVER BE
D pe L SURE. :
* An information-theoretic definition o4

* Information content of a string is the length of the small program that print it

e Beautiful, but not practical theory

* A complexity-theoretic defnition

* Pseudorandom generator: deterministic algorithm that outputs a sequence that is

indistinguishable from a random sequence using a probabilistic polytime

* “randomness is in the eye of the beholder”

algorithm

One first randomness source

Good entropy in a small package

Our first prototype

Analysis of results...

E] /__\./_"'—_
oy, =
i Tmm
'\\\ul 1[11,’21 i
illh]‘ .:) UJ.U
M‘ﬂ {fgruwa ! : :
iﬂm I
|
— W % i
I Hﬂ) llh I Illlll-.:
IH ‘rl):r, n ‘}-ﬂﬁ Lllllu‘ n
o I Hf;

Analysis of results...

2500

2000

Data acquisition
computer 1500

1000

Frequency

500

GPIB

Voltage (V)

Multimeter Oscilloscope

—
- N

O N A O ©
..

Temporal Correlation
[Fl = e S o

n

; ‘ '-ooo-oo-ooo-ooo‘oo-oo
Electronic A T A e s e Gy

Circuit Sample

1

o

Oscilloscope sampling time: 1.6ps

Analysis of results...

Data acquisition
computer

Multimeter

* Read voltage data each 3 ms (multimeter minimum time).
* Read 8 sets of 64 voltage data (buffer limitation). Totalizing 512.

e Calculate average voltage of the full set

* Convert to bits: If voltage upper than average -> 1

If voltage lower then average -> 0

* Concatenate bits into a 512-bits string.
* We are exploring the symmetry of previous
distribution

7,0%
6,0%
5,0%
4,0%
3,0%
2,0%
1,0%
0,0%

Frequency

159340, 5%%F 49 ~1p-13, 15
4-bit String

Randomness Test Suit

Statistical test p-value proportion result
Frequency 0.35048 47/50 pass
Block frequency 0.000123 | 47/50 pass
Cumulative sum 0.171867 | 47/50 pass
Longest runs 0.015598 | 47/50 pass
Rank 0.002374 = 50/50 pass
FFT 0.085587 = 47/50 pass
Non-overlapping template 0.085587 | 50/50 pass
Overlapping template 0.6163 49/50 pass
Random excursions variant 0.213309 | 48/50 pass
Serial 0.213309 = 50/50 pass
Linear Complexity 0.213309 | 49/50 pass

Our proposed architecture

Database Server
Microsoft SQL

Applications for

Gateway

Society

Web Service %
.net Framework
Web Site
Application
html

Data acquisition
computer

Random Bits

Multimeter

Electronic
Circuit

Traceable Time
Stamp

Offical Signature

NTP Server
Stratum 1

ICP Brazil
Infrastructure

UTC(INXE)

|
BIPM

Next Steps

Next steps

* Characterize our randonmess source according to NIST SP 800-90
* Generate multiple sources of randomness

* Devise a quantum source of randomness

* Implement a "verifiable randomness” protocol

* Develop beacons-based security protocols

* Insert legally valid timestamp and digital signature

* Provide randomness as a service and promote applications

Thank you for your attention!

Contact: rcmachado@inmetro.gov.br

machado.work@gmail.com

