Universität Bielefeld

Technische Fakultät Genominformatik

Algorithms for Computing the Family-Free Genomic Similarity under DCJ

Jens Stoye

Technische Fakultät and CeBiTec, Universität Bielefeld, Germany

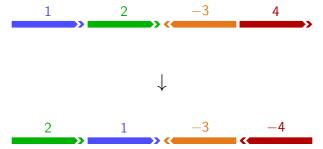
joint work with

Diego P. Rubert, Edna A. Hoshino, Marília D. V. Braga, Fábio V. Martinez

- A central question in comparative genomics is the elucidation of similarities and differences between genomes
- Large-scale rearrangements change the number of chromosomes and/or the positions and orientations of genes (fusions, inversions, ...)
- Genomes are represented as sequences of oriented DNA fragments (genes)

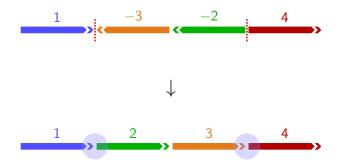
$$A = (\circ 3 - 1 4 2 - 6 5 \circ)$$

Classical problem: compute the rearrangement distance between two given genomes



- Genes are grouped into *families*
- Without duplicate genes, several polynomial time algorithms are known to compute genomic distances and similarities
- With duplicate genes, problems become more intricate and many presented approaches are NP-hard

The double-cut-and-join (DCJ) operation

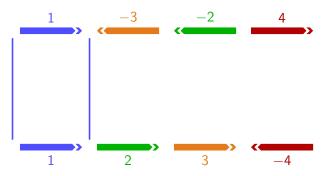


Computing the family-based DCJ distance between two genomes A and B is easy.

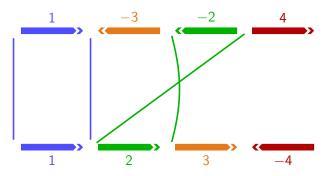
- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):

- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):

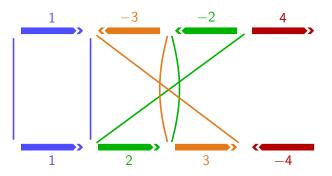
- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):



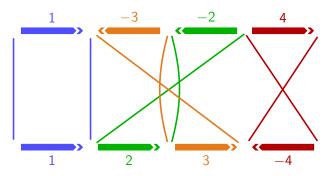
- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):



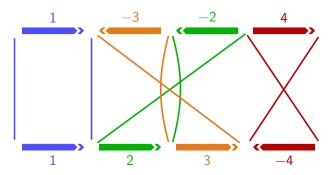
- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):



- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):



- Computing the family-based DCJ distance between two genomes A and B is easy.
- Adjacency Graph AG(A, B):



Family-based DCJ distance: $d_{DCJ}(A, B) = n - c - \frac{i}{2}$

- In some contexts, similarity measures are more flexible
- Family-based DCJ similarity (Martinez *et al.*, AMB 2015):

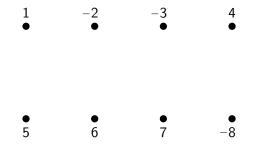
$$s_{\text{DCJ}}(A, B) = \sum_{C \in \mathcal{P}} \left(\frac{|C|}{|C|+2} \right) + \sum_{C \in \mathcal{I}} \left(\frac{|C|}{|C|+1} \right) + \sum_{C \in \mathcal{C}} \left(\frac{|C|}{|C|} \right)$$
$$= \sum_{C \in \mathcal{P}} \left(\frac{|C|}{|C|+2} \right) + \sum_{C \in \mathcal{I}} \left(\frac{|C|}{|C|+1} \right) + c$$

where \mathcal{P} , \mathcal{I} , \mathcal{C} are the even paths, odd paths, cycles in AG(A, B)Can be computed as efficiently as the DCJ distance

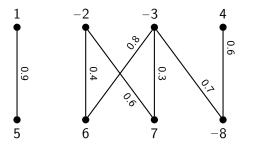
However,

- Family assignments are most of the time made automatically
- > Even in the absence of errors, there may be ambiguities

- > Each gene in each genome is represented by a unique (signed) symbol
- Normalized gene similarities with respect to some function σ are represented in the gene similarity graph $GS_{\sigma}(A, B)$



- > Each gene in each genome is represented by a unique (signed) symbol
- Normalized gene similarities with respect to some function σ are represented in the gene similarity graph $GS_{\sigma}(A, B)$

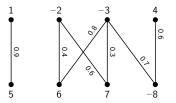


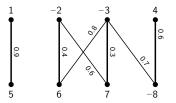
▶ Given a maximal matching *M* of the genes in *A* and the genes in *B*, inducing *reduced genomes* A^M and B^M, the family-free DCJ similarity is defined by:

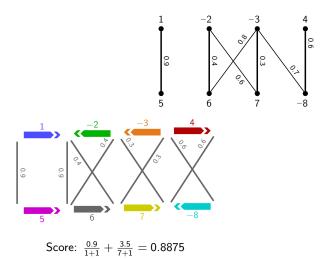
$$s_{\sigma}(A^{M}, B^{M}) = \sum_{C \in \mathcal{P}} \left(\frac{w(C)}{|C|+2} \right) + \sum_{C \in \mathcal{I}} \left(\frac{w(C)}{|C|+1} \right) + \sum_{C \in \mathcal{C}} \left(\frac{w(C)}{|C|} \right)$$

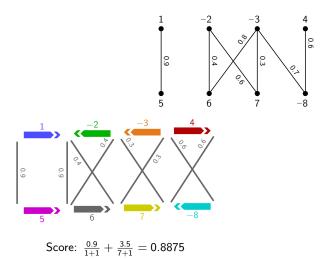
where \mathcal{P} , \mathcal{I} , \mathcal{C} are the even paths, odd paths, cycles in $AG(A^M, B^M)$

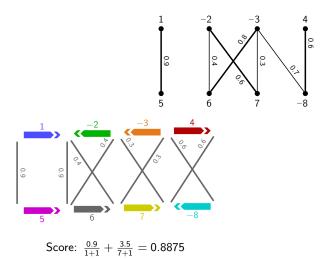
The family-free DCJ similarity is the highest score $s_{\sigma}(A^M, B^M)$ possible for any maximal matching M in $GS_{\sigma}(A, B)$.

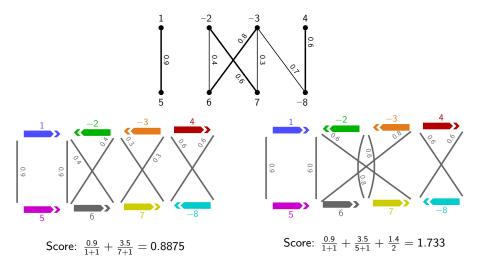












Previously shown: FFDCJ-SIMILARITY is NP-complete (Martinez et al., AMB 2015)

Theorem

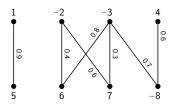
FFDCJ-SIMILARITY is APX-hard and cannot be approximated with approximation ratio better than 22/21 = 1.0476..., unless P = NP.

▶ Reduction from MAX-2SAT3 and MAX-2SAT.

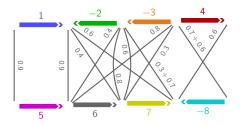
- We propose an integer linear program (ILP) formulation
- Similar to the one for the family-free DCJ distance (Martinez et al., AMB 2015), based on an approach by Shao et al. (JCB 2015) to compute the family-based DCJ distance with gene duplications
- ▶ Has $O(N^4)$ variables and $O(N^3)$ constraints, where N = |A| + |B|

Heuristics

• Gene similarity graph $GS_{\sigma}(A, B)$:

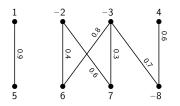


• Weighted adjacency graph $AG_{\sigma}(A, B)$:

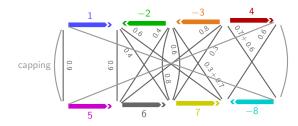


Heuristics

• Gene similarity graph $GS_{\sigma}(A, B)$:



• Weighted adjacency graph $AG_{\sigma}(A, B)$:



Goal: Pick set of consistent cycles maximizing the DCJ similarity score.

We have three heuristics:

GREEDY-DENSITY: prioritizes cycles in $AG_{\sigma}(A, B)$ with higher densities, where the *density* of some cycle *C* is given by $w(C)/|C|^2$ Goal: Pick set of consistent cycles maximizing the DCJ similarity score.

We have three heuristics:

GREEDY-DENSITY: prioritizes cycles in $AG_{\sigma}(A, B)$ with higher densities, where the *density* of some cycle *C* is given by $w(C)/|C|^2$ GREEDY-LENGTH: prioritizes 2-cycles in $AG_{\sigma}(A, B)$ with higher weights, then 4-cycles with higher weights, then 6-cycles... Goal: Pick set of consistent cycles maximizing the DCJ similarity score.

We have three heuristics:

GREEDY-DENSITY:prioritizes cycles in $AG_{\sigma}(A, B)$ with higher densities,
where the *density* of some cycle C is given by $w(C)/|C|^2$ GREEDY-LENGTH:prioritizes 2-cycles in $AG_{\sigma}(A, B)$ with higher weights,
then 4-cycles with higher weights, then 6-cycles...GREEDY-WMIS:tries to select a set of 2-cycles in $AG_{\sigma}(A, B)$ with the

highest sum of weights by an WMIS algorithm, then a set of 4-cycles...

- Simulated data generated by the Artificial Life Simulator (ALF)
- Gurobi solver for the ILPs, 4 threads, time limit of 1800 s
- Heuristics implemented in C++
- Genomes of sizes around 25, 50, and 1000 (heuristics only)
- ▶ 1-, 2-, and 5-fold increase in rearrangement rates (r)

	ILP			Greedy-Density	Greedy-Length	Greedy-wmis
	Time (s)	Not finished	Gap (%)	Δ (%)	Δ (%)	Δ (%)
25 genes, r = 1	19.50	0	-	5.03	5.84	5.97
25 genes, r = 2	84.60	2	69.21	30.77	43.57	43.00
25 genes, r = 5	49.72	0	-	43.83	55.38	55.38
50 genes, $r = 1$	445.91	7	19.56	18.74	19.36	18.90
50 genes, r = 2	463.50	29	38.12	65.41	66.52	64.78
50 genes, $r = 5$	330.88	29	259.72	177.58	206.60	206.31

- Running time for heuristics was negligible
- Average relative delta of heuristics increases proportionally to the rate of reversals and translocations ⇒ higher normalized weights on longer cycles

Observations:

- For some larger instances the relative delta for heuristics is very close to the values obtained by the ILP solver, suggesting the use of heuristics:
 - may be a good alternative for some classes of instances
 - could help the solver finding lower bounds quickly.
- \blacktriangleright GREEDY-DENSITY found solutions with delta <1% for 38% of the instances with 25 genes
- For heuristics and genomes of size 1000, avg. running time is 9 s for r = 1 and 68 s r = 5, GREEDY-DENSITY was the best most of times

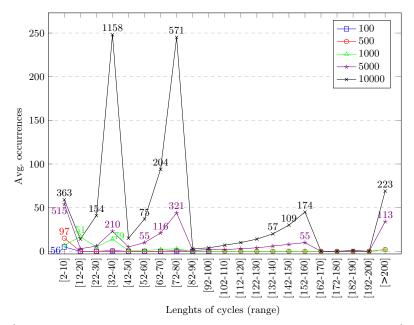
> The total number of cycles may be exponential

- > The total number of cycles may be exponential
- But when finding longer cycles, the heuristics do not try to find cycles composed by adjacencies in AG_σ(A, B) already covered by shorter cycles chosen previously

- > The total number of cycles may be exponential
- But when finding longer cycles, the heuristics do not try to find cycles composed by adjacencies in $AG_{\sigma}(A, B)$ already covered by shorter cycles chosen previously
- To better understand how cycles scale, we generated 5-fold instances with 100, 500, 1000, 5000, and 10000 genes, running the GREEDY-DENSITY, avg. running time was 0.008 s, 0.667 s, 1.98 s, 508 s and 2896 s

- > The total number of cycles may be exponential
- But when finding longer cycles, the heuristics do not try to find cycles composed by adjacencies in $AG_{\sigma}(A, B)$ already covered by shorter cycles chosen previously
- To better understand how cycles scale, we generated 5-fold instances with 100, 500, 1000, 5000, and 10000 genes, running the GREEDY-DENSITY, avg. running time was 0.008 s, 0.667 s, 1.98 s, 508 s and 2896 s
- Results (next figure) show that most of the cycles found are of short lengths compared to the genome sizes

- > The total number of cycles may be exponential
- But when finding longer cycles, the heuristics do not try to find cycles composed by adjacencies in $AG_{\sigma}(A, B)$ already covered by shorter cycles chosen previously
- To better understand how cycles scale, we generated 5-fold instances with 100, 500, 1000, 5000, and 10000 genes, running the GREEDY-DENSITY, avg. running time was 0.008 s, 0.667 s, 1.98 s, 508 s and 2896 s
- Results (next figure) show that most of the cycles found are of short lengths compared to the genome sizes
- Even the maximum number of longer cycles found for any instance is reasonably small



(on top of some marks is shown the maximum number of cycles)

Thank you!