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Genome rearrangements

A central question in comparative genomics is the elucidation of
similarities and differences between genomes

Large-scale rearrangements change the number of chromosomes
and/or the positions and orientations of genes (fusions, inversions, ...)

Genomes are represented as sequences of oriented DNA fragments
(genes)

A = (◦ 3 −1 4 2 −6 5 ◦)

3 −1 4 2 −6 5
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Genome rearrangements

Classical problem: compute the rearrangement distance between two given
genomes

1 2 −3 4

↓

2 1 −3 −4
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The family-based setting

Genes are grouped into families

Without duplicate genes, several polynomial time algorithms are
known to compute genomic distances and similarities

With duplicate genes, problems become more intricate and many
presented approaches are NP-hard
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The double-cut-and-join (DCJ) operation

1 −3 −2 4

↓

1 2 3 4
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Family-based DCJ distance

Computing the family-based DCJ distance between two genomes A
and B is easy.

Adjacency Graph AG (A,B):

1 −3 −2 4

1 2 3 −4

Family-based DCJ distance: ddcj(A,B) = n − c − i
2
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Family-based similarity

In some contexts, similarity measures are more flexible

Family-based DCJ similarity (Martinez et al., AMB 2015):

sdcj(A,B) =
∑
C∈P

(
|C |
|C |+ 2

)
+
∑
C∈I

(
|C |
|C |+ 1

)
+
∑
C∈C

(
|C |
|C |

)
=

∑
C∈P

(
|C |
|C |+ 2

)
+
∑
C∈I

(
|C |
|C |+ 1

)
+ c

where P, I, C are the even paths, odd paths, cycles in AG (A,B)

Can be computed as efficiently as the DCJ distance
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The family-based setting

However,

Family assignments are most of the time made automatically

Even in the absence of errors, there may be ambiguities
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The family-free setting

Each gene in each genome is represented by a unique (signed) symbol

Normalized gene similarities with respect to some function σ are
represented in the gene similarity graph GSσ(A,B)

1 2 3 4

5 6 7 8

− −

−

0
.9

0
.4

0.6

0.
8

0
.3

0.7

0
.6

Jens Stoye ffdcj-similarity 14.03.2018 at UFF 9 / 21



The family-free setting

Each gene in each genome is represented by a unique (signed) symbol

Normalized gene similarities with respect to some function σ are
represented in the gene similarity graph GSσ(A,B)

1 2 3 4

5 6 7 8

− −

−

0
.9

0
.4

0.6

0.
8

0
.3

0.7

0
.6

Jens Stoye ffdcj-similarity 14.03.2018 at UFF 9 / 21



The family-free similarity

Given a maximal matching M of the genes in A and the genes in B,
inducing reduced genomes AM and BM , the family-free DCJ similarity
is defined by:

sσ(AM ,BM) =
∑
C∈P

(
w(C )

|C |+ 2

)
+
∑
C∈I

(
w(C )

|C |+ 1

)
+
∑
C∈C

(
w(C )

|C |

)

where P, I, C are the even paths, odd paths, cycles in AG (AM ,BM)

The family-free DCJ similarity is the highest score sσ(AM ,BM)
possible for any maximal matching M in GSσ(A,B).
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The family-free similarity
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Inapproximability of ffdcj-similarity

Previously shown: ffdcj-similarity is NP-complete
(Martinez et al., AMB 2015)

Theorem

ffdcj-similarity is APX-hard and cannot be approximated with
approximation ratio better than 22/21 = 1.0476 ..., unless P = NP.

Reduction from max-2sat3 and max-2sat.
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Exact algorithm

We propose an integer linear program (ILP) formulation

Similar to the one for the family-free DCJ distance (Martinez et al.,
AMB 2015), based on an approach by Shao et al. (JCB 2015) to
compute the family-based DCJ distance with gene duplications

Has O(N4) variables and O(N3) constraints, where N = |A|+ |B|
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Heuristics

Gene similarity graph GSσ(A,B):
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Heuristics

Goal: Pick set of consistent cycles maximizing the DCJ similarity score.

We have three heuristics:

Greedy-Density: prioritizes cycles in AGσ(A,B) with higher densities,
where the density of some cycle C is given by w(C )/|C |2

Greedy-Length: prioritizes 2-cycles in AGσ(A,B) with higher weights,
then 4-cycles with higher weights, then 6-cycles...

Greedy-wmis: tries to select a set of 2-cycles in AGσ(A,B) with the
highest sum of weights by an wmis algorithm, then a set of
4-cycles...
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Experimental results

Simulated data generated by the Artificial Life Simulator (ALF)

Gurobi solver for the ILPs, 4 threads, time limit of 1800 s

Heuristics implemented in C++

Genomes of sizes around 25, 50, and 1000 (heuristics only)

1-, 2-, and 5-fold increase in rearrangement rates (r)
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Experimental results

ILP Greedy-Density Greedy-Length Greedy-wmis
Time (s) Not finished Gap (%) ∆ (%) ∆ (%) ∆ (%)

25 genes, r = 1 19.50 0 – 5.03 5.84 5.97
25 genes, r = 2 84.60 2 69.21 30.77 43.57 43.00
25 genes, r = 5 49.72 0 – 43.83 55.38 55.38
50 genes, r = 1 445.91 7 19.56 18.74 19.36 18.90
50 genes, r = 2 463.50 29 38.12 65.41 66.52 64.78
50 genes, r = 5 330.88 29 259.72 177.58 206.60 206.31

Running time for heuristics was negligible

Average relative delta of heuristics increases proportionally to the rate
of reversals and translocations ⇒ higher normalized weights on longer
cycles
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Experimental results

Observations:

For some larger instances the relative delta for heuristics is very close
to the values obtained by the ILP solver, suggesting the use of
heuristics:

may be a good alternative for some classes of instances
could help the solver finding lower bounds quickly.

Greedy-Density found solutions with delta < 1% for 38% of the
instances with 25 genes

For heuristics and genomes of size 1000, avg. running time is 9 s for
r = 1 and 68 s r = 5, Greedy-Density was the best most of times
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How can our heuristics be fast?

The total number of cycles may be exponential

But when finding longer cycles, the heuristics do not try to find cycles
composed by adjacencies in AGσ(A,B) already covered by shorter
cycles chosen previously

To better understand how cycles scale, we generated 5-fold instances
with 100, 500, 1000, 5000, and 10000 genes, running the
Greedy-Density, avg. running time was 0.008 s, 0.667 s, 1.98 s,
508 s and 2896 s

Results (next figure) show that most of the cycles found are of short
lengths compared to the genome sizes

Even the maximum number of longer cycles found for any instance is
reasonably small
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Thank you!
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