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Ana Lúısa C. Furtado (CEFET-RJ)

Celina M. H. de Figueiredo (PESC/COPPE)
Simone Dantas de Souza (IM/UFF)

Sylvain Gravier (Université Grenoble Alpes)
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Goal

Many researchers have been studying winning strategies in 2-player
combinatorial games.

We study the Timber Game, Coloring Game and their structural
properties in a caterpillar.

Moreover, we study the Nordhaus-Gaddum type inequality to the
parameters of these games.
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Why games?

Figure: Salon International de la Culture
et des jeux mathématiques, Paris, 2015.

Figure: Festival da Matemática, Rio de
Janeiro, 2017.
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Timber Game
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What is Timber game?

In 1984, a video game called timber was released.

In 2013, this game was treated as a combinatorial game modeled with
graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.
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What is Timber game?

Timber is played on a digraph D = (V , ~E ), with a domino on each
arc.

If one domino is toppled, it topples the dominoes in the direction it
was toppled and creates a chain reaction.

The orientation of the arc represents the available movement of the
domino piece.
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How to play?
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Who wins?

The player who topples all the last dominoes wins.

In the last example, player 1 wins if he topples arc (3, 2):
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P-position

A P-position is a configuration D in which the second player wins,
independently of how the first player plays.

The last example is not a P-position, because there is a winning
strategy for the first player.

An oriented cycle is not a P-position.

The study of Timber Game is only interesting in trees.
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Example

Figure: There is just 1 P-position.
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Known results for paths (Nowakowski et al., 2013)

Considering isomorphisms, we have:

edges (m) 1 2 3 4 5 6 7 8 9 10

P-positions 0 1 0 2 0 5 0 14 0 42

Then, the number of P-positions of a path with m edges is given by:

0 ; if m is odd;
(m)!

( m+2
2 )!( m

2 )!
; if m is even.

Sequence of Catalan.
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Known results for trees (Nowakowski et al., 2013): Lemma
1 - a decision lemma

Figure: The first player wins toppling the piece (v , u)
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Known results for trees (Nowakowski et al., 2013):
Lemmas 2 and 3 - reduction lemmas

Figure: The digraph in (a) is a P-position iff the digraph in (b) is a P-position.
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The importance of theses Lemmas

These three lemmas compose the steps of a polynomial algorithm to
decide if an oriented tree is or is not a P-position, presented in
Nowakowski et al. (2013).
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Theorem [DAM 2017]

Theorem

A tree has a P-position if, and only if, it has an even number of edges.

(⇒) If a tree has a P-position, then the configuration that is a
P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7
and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number
of edges.

(⇐) We have an algorithm that assures us that there is always at
least 1 P-position.
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Question

What a happy surprise! As with paths, in a tree, if the number of
edges is odd, then there is no P-position.

Is there a unique formula to provide us the number of P-positions of
a tree?
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What will we do?

In order to contribute to the open problem of determining the number of
P-positions of a tree, we study the case when G is a caterpillar.
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Caterpillar

A caterpillar cat(k1, k2, . . . , ks) is a tree which is obtained from a
central path v1, v2, v3, ..., vs (called spine), and by joining vi to ki new
vertices, i = 1, . . . , s. Thus, the number of vertices is
n = s + k1 + k2 + . . .+ ks .

Figure: cat(2, 0, 1, 0, 3, 0).
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Theorem [DAM 2017]

Theorem

Let H be a caterpillar cat(k1, ..., ks), for ki ∈ Z, i = 1, ..., s. The number
of P-positions of H is equal to the number of P-positions of a caterpillar
cat(l1, ..., ls), such that if ki is even, then li = 0, and if ki is odd, then
li = 1, for i = 1, ..., s.

Figure: cat(2, 0, 1, 0, 3, 0) is equivalent to cat(0, 0, 1, 0, 1, 0).
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Goal of the study in caterpillars

We want to determine the number of P-positions of any caterpillar.

We know that if the number of edges in a tree is odd, then the tree
does not have P-positions.

So let’s investigate only caterpillars with an even number of edges.
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Family 1: caterpillar to solve the general case (?)

Theorem

If H is cat(k1, ..., ka, ..., ka+b+1), such that k1, ..., ka are even, ka+1, ...,
ka+b+1 are odd, a is odd, and b ≥ 1, then H has∑b

R′=0
4R′+4

a+2R′+3

(
a

a−2R′−1
2

)(
b
R ′

)
P-positions.
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General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

Theorem

A caterpillar cat 〈a1, b1; a2, b2; ...; aj , bj〉 as in the Figure above has at least

∏j
i=1

∑bi
R′i =0

4R′i +4
ai+2R′+3

(
ai

ai−2R′i−1
2

)(
bi
R ′i

)
P-positions, where R ′i is the

number of edges oriented to the right among the bi edges in the spine.

This lower bound is tight.
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Family 2: caterpillar without a leg

Theorem

Let H be a caterpillar cat(k1, ..., ks), such that ki is even and
k1, ..., ki−1, ki+1, ..., ks are odd, for i = 1, ..., s. The number of P-positions

of H is

(
s − 1
i − 1

)
.

Proof by induction in s.
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Family 3: caterpillar with just one leg

Theorem

If H is cat(k1, ..., ka+1, ..., ka+b+1), such that only ka+1 is odd, a, b ≥ 1
and a + b + 1 is even, then H has∑b

R′=d b2e
−2b+4R′+2+2(−1)b

a−b+2R′+2+(−1)b

(
a

a+b−2R′−(−1)b

2

)
−b+2R′+1

R′+1

(
b
R ′

)
P-positions.
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Comparing the number of P-positions

Caterpillar Number of P-positions

Ps ; s odd ∼= 2s

s2/3

Family 1 ∼= s
i−1

2

Family 2 ∼= s i−1

(i−1)!

Family 3 ≥ 2s

(i(s−1))2/3

Table: Comparing the number of P-positions
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Comparison between the number of P-positions of a
caterpillar of Family 2 and a path

The graph below shows in the highlighted region for which values of s and
i the caterpillar of Family 2 has more P-positions than the path Ps+1,
when s is even (a), and more P-positions than the path Ps+2, when s is
odd (b).

(a) (b)
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Conclusion: Timber Game

It is a very difficult and surprising counting problem.

It is a reduction problem.

We are able to determine the number of P-positions for infinite families of
caterpillars.
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Presentations, publications and submissions

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game
with Caterpillars. Matemática Contemporânea 44 (2015), 1-9.

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game
with Caterpillars. In proceedings of the 13th Cologne-Twente
Workshop on Graphs & Combinatorial Optimization, Istambul (2015).

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game as
a counting problem. Discrete Applied Mathematics special issue of GO
X (2017).
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Coloring Game
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What is Coloring Game?

The coloring game is a two player
non-cooperative game conceived by
Steven Brams.

Firstly published in 1981 by Martin
Gardner.

Reinvented in 1991 by Bodlaender, who
studied the game in the context of
graphs.
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How to play?

Given t colors, Alice and Bob take turns properly coloring an
uncolored vertex.

Alice: minimizer.

Bob: maximizer.
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Who wins?

Alice wins when the graph is completely colored with t colors;
otherwise, Bob wins.

The game chromatic number χg (G ) of G is the smallest number t of
colors that ensures that Alice wins (when Alice starts the game).
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Simple results

χ(G ) ≤ χg (G ) ≤ ∆(G ) + 1

χg (Kn) = n
χg (Sn) = 1

χg (P1) = 1, χg (P2) = χg (P3) = 2

For n ≥ 4, we have that χg (Pn) = 3

χg (Cn) = 3

The stars K1,p with p ≥ 1 are the only connected graphs satisfying
χg (G ) = 2
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Different graph classes studied

planar graphs: 7 ≤ χg (P) ≤ 17;

outerplanar graphs: 6 ≤ χg (O) ≤ 7;

toroidal grids: χg (TG ) = 5;

partial k-trees: χg (P) ≤ 3k + 2;

the cartesian products of some classes of graphs: for example,
χg (T1�T2) ≤ 12;
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Literature for trees

Bodlaender (1991): χg (T ) ≤ 5.

Faigle et al. (1993): χg (F ) ≤ 4.

Dunn et al.(2015): criteria for determining χg (F ), for a forest
without vertex of degree 3, in polynomial time.
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Our problem

Due to the difficulty concerning this subject, the problem of
characterizing forests with χg (F ) = 3 remains open.

In our work, we contribute to this study by analyzing the caterpillar.
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Why caterpillars again?

Example presented in Bodlaender (1991) to prove the existence of a
tree Hd with χg (Hd) ≥ 4:

Dunn et al.(2015) proved that this caterpillar is the smallest tree such
that χg (T ) = 4.

We are interested in characterizing when χg (H) is 3 or 4.
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Claw
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Our new parameters

The game chromatic number is:

χa
g (G ) (or simply χg (G )): when Alice starts the game;

χb
g (G ): when Bob starts the game!

χg (G ,Z ): when Alice starts the game in the partially colored graph G ,
for Z a set of vertices of V (G ) such that for all v ∈ Z , c(v) 6= ∅.
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Sufficient conditions for χg(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H ′, such that
χa
g (H ′) = χb

g (H ′) = 4, then χa
g (H) = χb

g (H) = 4.

Theorem

If a caterpillar H has two induced subcaterpillars H ′ and H ′′, such that
χb
g (H ′) = χb

g (H ′′) = 4, then χa
g (H) = χb

g (H) = 4.

42 / 69



Sufficient conditions for χg(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H ′, such that
χa
g (H ′) = χb

g (H ′) = 4, then χa
g (H) = χb

g (H) = 4.

Theorem

If a caterpillar H has two induced subcaterpillars H ′ and H ′′, such that
χb
g (H ′) = χb

g (H ′′) = 4, then χa
g (H) = χb

g (H) = 4.

42 / 69



Sufficient conditions for χg(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H ′, such that
χa
g (H ′) = χb

g (H ′) = 4, then χa
g (H) = χb

g (H) = 4.

Theorem

If a caterpillar H has two induced subcaterpillars H ′ and H ′′, such that
χb
g (H ′) = χb

g (H ′′) = 4, then χa
g (H) = χb

g (H) = 4.

42 / 69



Sufficient conditions for χg(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H ′, such that
χa
g (H ′) = χb

g (H ′) = 4, then χa
g (H) = χb

g (H) = 4.

Theorem

If a caterpillar H has two induced subcaterpillars H ′ and H ′′, such that
χb
g (H ′) = χb

g (H ′′) = 4, then χa
g (H) = χb

g (H) = 4.

42 / 69



Necessary conditions for χg(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has χg (H) = 4, then H has at least four vertices of
degree at least 4.

Theorem

If H is a minimal caterpillar with respect to χa
g (H) = 4, then H does not

have consecutive vertices of degree 2, unless H has two edge disjoint
induced subcaterpillars H ′ and H ′′ that are minimal with respect to
χb
g (H ′) = 4 and χb

g (H ′′) = 4.

High degree vertices (degree of at least 4) are important to have
χg (H) = 4.

Low degree vertices (degree 2) are important to have χg (H) ≤ 3.
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Four infinite families

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.

44 / 69



Four infinite families

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.

44 / 69



Four infinite families

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.

44 / 69



Four infinite families

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.

44 / 69



Four infinite families

Caterpillars

with maximum degree 3;

without vertex of degree 2;

without vertex of degree 3;

with vertices of degree 1, 2, 3 and 4.

44 / 69



Caterpillar with maximum degree 3

Theorem (H with ∆(H) = 3)

Let H be the caterpillar cat(k1, ..., ks) with ∆(H) = 3. We have that H
has χa

g (H), χb
g (H) ≤ 3. Moreover, let F be the forest where each

connected component is a caterpillar and ∆(F ) = 3. We have that F has
χa
g (F ) ≤ 3.

We use 3 claims to prove the theorem and the proof of each one follows by
induction.
Claim 1) If Z = {v1, vs}, then χa

g (H,Z ), χb
g (H,Z ) ≤ 3, except for the

caterpillars with s odd, which has χb
g (H,Z ) ≤ 4.

Claim 2) If Z = {v1}, then χa
g (H,Z ), χb

g (H,Z ) ≤ 3.

Claim 3) We have that χa
g (H), χb

g (H) ≤ 3.
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Two claws

46 / 69



Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one
vertex of degree 4. We have that χb

g (H,Z ) = 4, where
Z = {v1, vs | c(v1) 6= c(vs)}.
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Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that χb

g (H,Z ) = χa
g (H,Z ) = 4, where

Z = {v1, vs | c(v1) 6= c(vs)}.
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Caterpillar without vertex of degree 2

Theorem

Let H be the caterpillar without vertex of degree 2. We have that
χa
g (H) = χb

g (H) = 4 if, and only if, H is caterpillar cat(k1, ..., ks), such
that k1 = ks = 0, ki 6= 0, ∀i ∈ {2, ..., s − 1}, and there are at least four
vertices of degree at least 4.
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Proof of Theorem (H without vertex of degree 2)

⇒ By the necessary condition for χg (H) = 4.

⇐
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Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars Hd , H33, H[α] ∪ H[β], H[α][β] and
H[α]3[β].

Figure: Caterpillars (a) H33 (b) H[3] (c)H[3][4] (d)H[3]3[4].

Theorem

A caterpillar H without vertex of degree 3 has χg (H) = 4 if, and only if, H
has a caterpillar of Family Q as an induced subcaterpillar.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q’ be the set of caterpillars {H ′[α] ∪ H ′[β], H
′
[α] ∪ H3, H3 ∪ H3,

H ′22 and H ′[α][β],H
′
23}.

Figure: Caterpillars (a) H ′
[6] (b) H ′

3 (c)H ′
22 (d)H[6][3] (e)H ′

23.

Theorem

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q ′ as a induced subcaterpillar, then χg (H) = 4.

52 / 69



Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q’ be the set of caterpillars {H ′[α] ∪ H ′[β], H
′
[α] ∪ H3, H3 ∪ H3,

H ′22 and H ′[α][β],H
′
23}.

Figure: Caterpillars (a) H ′
[6] (b) H ′

3 (c)H ′
22 (d)H[6][3] (e)H ′

23.

Theorem

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q ′ as a induced subcaterpillar, then χg (H) = 4.

52 / 69



Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q’ be the set of caterpillars {H ′[α] ∪ H ′[β], H
′
[α] ∪ H3, H3 ∪ H3,

H ′22 and H ′[α][β],H
′
23}.

Figure: Caterpillars (a) H ′
[6] (b) H ′

3 (c)H ′
22 (d)H[6][3] (e)H ′

23.

Theorem

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q ′ as a induced subcaterpillar, then χg (H) = 4.

52 / 69



Summary

∆(G ) χg (G ) = 1 χg (G ) = 2 χg (G ) = 3 χg (G ) = 4

0 P1 - - -
1 - P2 - -
2 - P3 Pn, n ≥ 4 -
3 - star not a star -
4 - star see next Figure see next Figure
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Summary

Figure: Caterpillars with ∆(H) = 4 and χg (H) = 4.
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χg(F )

Theorem

Let F be a forest composed by r trees T1, ..., Tr . Assume that
χa
g (T1) ≤ χa

g (T2) ≤ ... ≤ χa
g (Tr ), and, if there exist two trees with the

same game chromatic number, then Ti and Tj are ordered in a way that
χb
g (Ti ) ≤ χb

g (Tj), for i < j . We have that:

1 If χb
g (Tr ) > χa

g (Tr ), χb
g (Tr−1), then χg (F ) = χa

g (Tr );

2 If χb
g (Tr ) = χb

g (Tr−1) > χa
g (Tr ), then χg (F ) = χb

g (Tr );

3 If χa
g (Tr ) = χb

g (Tr ), then χg (F ) = χa
g (Tr ) = χb

g (Tr );

4 If χb
g (Tr ) < χa

g (Tr ) and
∑r−1

i=1 |V (Ti )| is even, then χg (F ) = χa
g (Tr );

5 If χb
g (Tr ) < χa

g (Tr ) and
∑r−1

i=1 |V (Ti )| is odd, then χg (F ) =

max
{
χa
g (F\Tr ), χb

g (Tr )
}

.
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Conclusion: Coloring Game

It is a reduction problem.

We are able to characterize evil, indifferent and good subgraphs for Alice
to win the game with 3 colors in caterpillars.
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Nordhaus-Gaddum type
inequalities
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What are Nordhaus-Gaddum type inequalities?

Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2
√
n ≤ χ(G ) + χ(G ) ≤ n + 1. These

bounds are best possible for infinitely many values of n.

Survey by Aouiche and Hansen (2013): 360 articles.

To the best of our knowledge, the only Nordhaus-Gaddum type
inequality existing for invariants related to games on graphs is by Alon
et al.(2002) and concerns the game domination number.
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Nordhaus-Gaddum type inequalities to χg(G ) + χg(G ):
Theorem 4.4

Theorem

Nordhaus and Gaddum For any graph G of order n, we have that
2
√
n ≤ χg (G ) + χg (G ) ≤

⌈
3n
2

⌉
. Moreover, the bounds are best possible

asymptotically:

1 for infinitely many values of n, there are graphs G of order n with

χg (G ) + χg (G ) =

⌈
4n

3

⌉
− 1;

2 for infinitely many values of n, there are graphs G of order n with
χg (G ) + χg (G ) = 2

√
2n − 1.

The lower bound follows from Theorem of Nordhaus and Gaddum (1965)
and the inequality χ(G ) ≤ χg (G ).
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Proof for the upper bound χg(G ) + χg(G ) ≤
⌈

3n
2

⌉
Case 1) n is even.

In G , Alice begins by coloring only in B(G ) ∪ C (G ) until those vertices are

all colored. Assume that
n

2
colors are used.

Case 2) n is odd is similar and χg (G ) + χg (G ) ≤
⌈

3n

2

⌉
.
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3n

2

⌉
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Construction of family 1 of the Theorem 4.4

Lemma

Let Gl be the graph join Sl ⊕ Kd l
2e, with order n = l +

⌈
l

2

⌉
6≡ 1 mod 3

and n ≥ 5. We have that χg (Gl) + χg (Gl) =

⌈
4n

3

⌉
− 1.

Alice colors first in the clique.

When Alice finishes to color the vertices of the clique, she has played

⌈
l

2

⌉
times, and Bob

⌈
l

2

⌉
− 1 times.

χg (Gl) = 2

⌈
l

2

⌉
− 1.

Gl is composed by a clique Kl and a stable set Sd l
2e ⇒ χg (Gl) = l .

χg (Gl) + χg (Gl) = 2

⌈
l

2

⌉
+ l − 1.
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Family 2 of the Theorem 4.4

Lemma

Let G be a complete

√
n

2
-partite graph, such that

√
n

2
is an even integer

and each

√
n

2
disjoint set of vertices has exactly

√
2n vertices. We have

that χg (G ) + χg (G ) = 2
√

2n − 1.
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Nordhaus-Gaddum type inequalities to other games

We determine the Nordhaus-Gaddum type inequalities to

the number of P-positions of a caterpillar (Timber Game);
the game coloring number of any graph G (Marking Game).

Marking Game is “colorblind” version of the coloring game.

All bounds are tight, except the upper bound for the number of
P-positions of a caterpillar.
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Submission

Charpentier, C., Furtado, A., Dantas, S., Figueiredo, C., Gravier, On
Nordhaus-Gaddum type inequalities for the Game Chromatic and
Game Coloring numbers. Submitted to Discrete Maths. (2018)
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Current and Future work: Timber Game

Conjecture

The number of P-positions of family 1 is:
2(s − a + 1)

a− 1

(
s − 1

(a− 3)/2

)
.

Is there a simpler formula for the number of P-positions of family 3
without the use of summation?

Given any caterpillar, is there a polynomial algorithm to determine its
number of P-positions?
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Current and Future work: Coloring Game

Theorem

The caterpillar H ′[α] is the unique caterpillar with vertices of degree 1, 2, 3

and 4 satisfying χa
g (H ′[α]) = 3 and that is minimal with respect to

χb
g (H ′[α]) = 4. X (LAWCG 2018)

Conjecture

If H is a caterpillar with vertices of degree 1, 2, 3 and 4, and is minimal
with respect to χg (H) = 4, then H is a caterpillar of Family Q ′.

Conjecture

χa
g (T ) ≤ χb

g (T ), for a tree T , except for T = P4.
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Current and Future work: Nordhauss-Gaddum

Is it possible to improve the upper bound for the number of
P-positions in a caterpillar so that the bound is tight?

Is it possible to find extremal graphs for the lower and upper bounds
for the number of P-positions in a caterpillar, the game chromatic
and coloring numbers in any graph?
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Current and Future work in general

Apply the games in high school, college classes and events of the
popularization of mathematics.
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THANK YOU!
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