Combinatorial Games in Graphs: Timber Game and Coloring Game

Ana Luísa C. Furtado (CEFET-RJ)
Celina M. H. de Figueiredo (PESC/COPPE)
Simone Dantas de Souza (IM/UFF)
Sylvain Gravier (Université Grenoble Alpes)

July 11, 2018
IME-UFF

Summary

(1) Combinatorial Games

(2) Timber Game
(3) Coloring Game
(4) Nordhaus-Gaddum type inequalities
(5) Current and future work

Goal

- Many researchers have been studying winning strategies in 2-player combinatorial games.
- We study the Timber Game, Coloring Game and their structural properties in a caterpillar.
- Moreover, we study the Nordhaus-Gaddum type inequality to the parameters of these games.

Goal

- Many researchers have been studying winning strategies in 2-player combinatorial games.
- We study the Timber Game, Coloring Game and their structural properties in a caterpillar.
- Moreover, we study the Nordhaus-Gaddum type inequality to the parameters of these games.

Goal

- Many researchers have been studying winning strategies in 2-player combinatorial games.
- We study the Timber Game, Coloring Game and their structural properties in a caterpillar.
- Moreover, we study the Nordhaus-Gaddum type inequality to the parameters of these games.

Why games?

Figure: Salon International de la Culture et des jeux mathématiques, Paris, 2015.

Figure: Festival da Matemática, Rio de Janeiro, 2017.

Timber Game

What is Timber game?

- In 1984, a video game called timber was released.
- In 2013, this game was treated as a combinatorial game modeled with graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.

What is Timber game?

- In 1984, a video game called timber was released.
- In 2013, this game was treated as a combinatorial game modeled with graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.

What is Timber game?

- In 1984, a video game called timber was released.
- In 2013, this game was treated as a combinatorial game modeled with graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.

What is Timber game?

- Timber is played on a digraph $D=(V, \vec{E})$, with a domino on each arc.
- If one domino is toppled, it topples the dominoes in the direction it was toppled and creates a chain reaction.

What is Timber game?

- Timber is played on a digraph $D=(V, \vec{E})$, with a domino on each arc.
- If one domino is toppled, it topples the dominoes in the direction it was toppled and creates a chain reaction.
- The orientation of the arc represents the available movement of the domino piece.

What is Timber game?

- Timber is played on a digraph $D=(V, \vec{E})$, with a domino on each arc.
- If one domino is toppled, it topples the dominoes in the direction it was toppled and creates a chain reaction.
- The orientation of the arc represents the available movement of the domino piece.

How to play?

What remains after toppling (3,2)
\&cope
$8 / 69$

How to play?

What remains after toppling $(6,5)$

Who wins?

- The player who topples all the last dominoes wins.
- In the last example, player 1 wins if he topples arc $(3,2)$:

Who wins?

- The player who topples all the last dominoes wins.
- In the last example, player 1 wins if he topples arc $(3,2)$:

Who wins?

- The player who topples all the last dominoes wins.
- In the last example, player 1 wins if he topples arc $(3,2)$:

What remains after toppling (3,2)

P-position

- A P-position is a configuration D in which the second player wins, independently of how the first player plays.
- The last example is not a P-position, because there is a winning strategy for the first player.

P-position

- A P-position is a configuration D in which the second player wins, independently of how the first player plays.
- The last example is not a P-position, because there is a winning strategy for the first player.
- An oriented cycle is not a P-position.
- The study of Timber Game is only interesting in trees.

P-position

- A P-position is a configuration D in which the second player wins, independently of how the first player plays.
- The last example is not a P-position, because there is a winning strategy for the first player.
- An oriented cycle is not a P-position.
- The study of Timber Game is only interesting in trees.

P-position

- A P-position is a configuration D in which the second player wins, independently of how the first player plays.
- The last example is not a P-position, because there is a winning strategy for the first player.
- An oriented cycle is not a P-position.
- The study of Timber Game is only interesting in trees.

Example

Path G with 3 vertices:

Configurations of G :

Player 1 wins

Player 1 wins

Player 1 wins

Figure: There is just $1 P$-position.

Known results for paths (Nowakowski et al., 2013)

- Considering isomorphisms, we have:

edges (m)	1	2	3	4	5	6	7	8	9	10
P-positions	0	1	0	2	0	5	0	14	0	42

- Then, the number of P-positions of a path with m edges is given by:
\&copes

Known results for paths (Nowakowski et al., 2013)

- Considering isomorphisms, we have:

edges (m)	1	2	3	4	5	6	7	8	9	10
P-positions	0	1	0	2	0	5	0	14	0	42

- Then, the number of P-positions of a path with m edges is given by:

Known results for paths (Nowakowski et al., 2013)

- Considering isomorphisms, we have:

edges (m)	1	2	3	4	5	6	7	8	9	10
P-positions	0	1	0	2	0	5	0	14	0	42

- Then, the number of P-positions of a path with m edges is given by:
- 0 ; if m is odd;
- $\frac{(m+2)!}{\left(\frac{m}{2}\right)!\left(\frac{m}{2}\right)!}$; if m is even.

Known results for paths (Nowakowski et al., 2013)

- Considering isomorphisms, we have:

edges (m)	1	2	3	4	5	6	7	8	9	10
P-positions	0	1	0	2	0	5	0	14	0	42

- Then, the number of P-positions of a path with m edges is given by:
- 0 ; if m is odd;
- $\frac{(m)!}{\left(\frac{m+2}{2}\right)!\left(\frac{m}{2}\right)!}$; if m is even.
- Sequence of Catalan.

Known results for paths (Nowakowski et al., 2013)

- Considering isomorphisms, we have:

edges (m)	1	2	3	4	5	6	7	8	9	10
P-positions	0	1	0	2	0	5	0	14	0	42

- Then, the number of P-positions of a path with m edges is given by:
- 0 ; if m is odd;
- $\frac{(m)!}{\left(\frac{m+2}{2}\right)!\left(\frac{m}{2}\right)!}$; if m is even.
- Sequence of Catalan.

Known results for trees (Nowakowski et al., 2013): Lemma 1 - a decision lemma

Figure: The first player wins toppling the piece (v, u)

Known results for trees (Nowakowski et al., 2013): Lemmas 2 and 3 - reduction lemmas

(a)

(b)

Figure: The digraph in (a) is a P-position iff the digraph in (b) is a P-position.

Known results for trees (Nowakowski et al., 2013): Lemmas 2 and 3 - reduction lemmas

Figure: The digraph in (a) is a P-position iff the digraph in (b) is a P-position.

The importance of theses Lemmas

- These three lemmas compose the steps of a polynomial algorithm to decide if an oriented tree is or is not a P-position, presented in Nowakowski et al. (2013).

Theorem [DAM 2017]

Theorem

A tree has a P-position if, and only if, it has an even number of edges.

- (\Rightarrow) If a tree has a P-position, then the configuration that is a P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7 and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number of edges.
$-$
(\Leftarrow) We have an algorithm that assures us that there is always at least 1 P-position

Theorem [DAM 2017]

Theorem

A tree has a P-position if, and only if, it has an even number of edges.

- (\Rightarrow) If a tree has a P-position, then the configuration that is a P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7 and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number of edges.
- (\Leftarrow) We have an algorithm that assures us that there is always at least $1 P$-position.

Theorem [DAM 2017]

Theorem

A tree has a P-position if, and only if, it has an even number of edges.

- (\Rightarrow) If a tree has a P-position, then the configuration that is a P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7 and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number of edges.
- (\Leftarrow) We have an algorithm that assures us that there is always at least $1 P$-position.

Question

- What a happy surprise! As with paths, in a tree, if the number of edges is odd, then there is no P-position.
- Is there a unique formula to provide us the number of P-positions of a tree?
$17 / 69$

Question

- What a happy surprise! As with paths, in a tree, if the number of edges is odd, then there is no P-position.
- Is there a unique formula to provide us the number of P-positions of a tree?

What will we do?

In order to contribute to the open problem of determining the number of P-positions of a tree, we study the case when G is a caterpillar.

What will we do?

In order to contribute to the open problem of determining the number of P-positions of a tree, we study the case when G is a caterpillar.

Caterpillar

- A caterpillar cat $\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ is a tree which is obtained from a central path $v_{1}, v_{2}, v_{3}, \ldots, v_{s}$ (called spine), and by joining v_{i} to k_{i} new vertices, $i=1, \ldots, s$. Thus, the number of vertices is

$$
n=s+k_{1}+k_{2}+\ldots+k_{s}
$$

Figure: $\operatorname{cat}(2,0,1,0,3,0)$.

Theorem [DAM 2017]

Theorem

Let H be a caterpillar $\operatorname{cat}\left(k_{1}, \ldots, k_{s}\right)$, for $k_{i} \in \mathbb{Z}, i=1, \ldots, s$. The number of P-positions of H is equal to the number of P-positions of a caterpillar $\operatorname{cat}\left(l_{1}, \ldots, l_{s}\right)$, such that if k_{i} is even, then $l_{i}=0$, and if k_{i} is odd, then $l_{i}=1$, for $i=1, \ldots, s$.

Figure: $\operatorname{cat}(2,0,1,0,3,0)$ is equivalent to $\operatorname{cat}(0,0,1,0,1,0)$.

Goal of the study in caterpillars

- We want to determine the number of P-positions of any caterpillar.

Goal of the study in caterpillars

- We want to determine the number of P-positions of any caterpillar.

Goal of the study in caterpillars

- We want to determine the number of P-positions of any caterpillar.

- We know that if the number of edges in a tree is odd, then the tree does not have P-positions.
- So let's investigate only caterpillars with an even number of edges.

UFRJ
$21 / 69$

Goal of the study in caterpillars

- We want to determine the number of P-positions of any caterpillar.

- We know that if the number of edges in a tree is odd, then the tree does not have P-positions.
- So let's investigate only caterpillars with an even number of edges.

Family 1: caterpillar to solve the general case (?)

Family 1: caterpillar to solve the general case (?)

Family 1: caterpillar to solve the general case (?)

Family 1: caterpillar to solve the general case (?)

Theorem

If H is $\operatorname{cat}\left(k_{1}, \ldots, k_{a}, \ldots, k_{a+b+1}\right)$, such that k_{1}, \ldots, k_{a} are even, k_{a+1}, \ldots, k_{a+b+1} are odd, a is odd, and $b \geq 1$, then H has
$\sum_{R^{\prime}=0}^{b} \frac{4 R^{\prime}+4}{a+2 R^{\prime}+3}\binom{a}{\frac{a-2 R^{\prime}-1}{2}}\binom{b}{R^{\prime}}$ P-positions.

General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

Theorem

A caterpillar cat $\left\langle a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{j}, b_{j}\right\rangle$ as in the Figure above has at least
$\prod_{i=1}^{j} \sum_{R_{i}^{\prime}=0}^{b_{i}} \frac{4 R_{i}^{\prime}+4}{a_{i}+2 R^{\prime}+3}\binom{a_{i}}{\frac{a_{i}-2 R_{i}^{\prime}-1}{2}}\binom{b_{i}}{R_{i}^{\prime}}$ P-positions, where R_{i}^{\prime} is the number of edges oriented to the right among the b_{i} edges in the spine.

General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

Theorem

A caterpillar cat $\left\langle a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{j}, b_{j}\right\rangle$ as in the Figure above has at least $\prod_{i=1}^{j} \sum_{R_{i}^{\prime}=0}^{b_{i}} \frac{4 R_{i}^{\prime}+4}{a_{i}+2 R^{\prime}+3}\binom{a_{i}}{\frac{a_{i}-2 R_{i}^{\prime}-1}{2}}\binom{b_{i}}{R_{i}^{\prime}}$ P-positions, where R_{i}^{\prime} is the number of edges oriented to the right among the b_{i} edges in the spine.

This lower bound is tight.

Family 2: caterpillar without a leg

Family 2: caterpillar without a leg

Theorem

Let H be a caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$, such that k_{i} is even and $k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{s}$ are odd, for $i=1, \ldots, s$. The number of P-positions of H is $\binom{s-1}{i-1}$.

Family 2: caterpillar without a leg

Theorem

Let H be a caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$, such that k_{i} is even and $k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{s}$ are odd, for $i=1, \ldots, s$. The number of P-positions of H is $\binom{s-1}{i-1}$.

Proof by induction in s.

Family 3: caterpillar with just one leg

Family 3: caterpillar with just one leg

Theorem

If H is $\operatorname{cat}\left(k_{1}, \ldots, k_{a+1}, \ldots, k_{a+b+1}\right)$, such that only k_{a+1} is odd, $a, b \geq 1$ and $a+b+1$ is even, then H has
$\sum_{R^{\prime}=\left\lceil\frac{b}{2}\right\rceil}^{b} \frac{-2 b+4 R^{\prime}+2+2(-1)^{b}}{a-b+2 R^{\prime}+2+(-1)^{b}}\binom{a}{\frac{a+b-2 R^{\prime}-(-1)^{b}}{2}} \frac{-b+2 R^{\prime}+1}{R^{\prime}+1}\binom{b}{R^{\prime}}$
P-positions.

Comparing the number of P-positions

Caterpillar	Number of P-positions
$P_{s} ; s$ odd	$\cong \frac{2^{5}}{s^{2 / 3}}$
Family 1	$\cong s^{\frac{i-1}{2}}$
Family 2	$\cong \frac{s^{i-1}}{(i-1)!}$
Family 3	$\geq \frac{2^{s}}{(i(s-1))^{2 / 3}}$

Table: Comparing the number of P-positions

Comparison between the number of P-positions of a caterpillar of Family 2 and a path

The graph below shows in the highlighted region for which values of s and i the caterpillar of Family 2 has more P-positions than the path P_{s+1}, when s is even (a), and more P-positions than the path P_{s+2}, when s is odd (b).

Comparison between the number of P-positions of a caterpillar of Family 2 and a path

The graph below shows in the highlighted region for which values of s and i the caterpillar of Family 2 has more P-positions than the path P_{s+1}, when s is even (a), and more P-positions than the path P_{s+2}, when s is odd (b).

(a)

- (b)

COPPE

Conclusion: Timber Game

It is a very difficult and surprising counting problem.

Conclusion: Timber Game

It is a very difficult and surprising counting problem.
It is a reduction problem.

Conclusion: Timber Game

It is a very difficult and surprising counting problem.
It is a reduction problem.

We are able to determine the number of P -positions for infinite families of caterpillars.

Presentations, publications and submissions

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game with Caterpillars. Matemática Contemporânea 44 (2015), 1-9.

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game with Caterpillars. In proceedings of the 13th Cologne-Twente Workshop on Graphs \& Combinatorial Optimization, Istambul (2015).

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game as a counting problem. Discrete Applied Mathematics special issue of GO X (2017).

Coloring Game

What is Coloring Game?

- The coloring game is a two player non-cooperative game conceived by Steven Brams.

SCIENTIFIC AMERICAN

What is Coloring Game?

- The coloring game is a two player non-cooperative game conceived by Steven Brams.
- Firstly published in 1981 by Martin Gardner.
- Reinvented in 1991 by Bodlaender, who studied the game in the context of graphs.

SCIENTIFIC AMERICAN

What is Coloring Game?

- The coloring game is a two player non-cooperative game conceived by Steven Brams.
- Firstly published in 1981 by Martin Gardner.
- Reinvented in 1991 by Bodlaender, who studied the game in the context of graphs.

SCIENTIFIC AMERICAN

How to play?

- Given t colors, Alice and Bob take turns properly coloring an uncolored vertex.

How to play?

- Given t colors, Alice and Bob take turns properly coloring an uncolored vertex.

How to play?

- Given t colors, Alice and Bob take turns properly coloring an uncolored vertex.

- Alice: minimizer.
- Bob: maximizer

How to play?

- Given t colors, Alice and Bob take turns properly coloring an uncolored vertex.

- Alice: minimizer.
- Bob: maximizer.

How to play?

Who wins?

- Alice wins when the graph is completely colored with t colors; otherwise, Bob wins.
- The game chromatic number $\chi_{g}(G)$ of G is the smallest number t of colors that ensures that Alice wins (when Alice starts the game).

Who wins?

- Alice wins when the graph is completely colored with t colors; otherwise, Bob wins.
- The game chromatic number $\chi_{g}(G)$ of G is the smallest number t of colors that ensures that Alice wins (when Alice starts the game).

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$
- $\chi_{g}\left(S_{n}\right)=1$

$$
\text { - } \chi_{g}\left(P_{1}\right)=1, \chi_{g}\left(P_{2}\right)=\chi_{g}\left(P_{3}\right)=2
$$

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$
- $\chi_{g}\left(S_{n}\right)=1$
- $\chi_{g}\left(P_{1}\right)=1, \chi_{g}\left(P_{2}\right)=\chi_{g}\left(P_{3}\right)=2$
- For $n \geq 4$, we have that $\chi_{g}\left(P_{n}\right)=3$
©coppe

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$
- $\chi_{g}\left(S_{n}\right)=1$
- $\chi_{g}\left(P_{1}\right)=1, \chi_{g}\left(P_{2}\right)=\chi_{g}\left(P_{3}\right)=2$
- For $n \geq 4$, we have that $\chi_{g}\left(P_{n}\right)=3$

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$
- $\chi_{g}\left(S_{n}\right)=1$
- $\chi_{g}\left(P_{1}\right)=1, \chi_{g}\left(P_{2}\right)=\chi_{g}\left(P_{3}\right)=2$
- For $n \geq 4$, we have that $\chi_{g}\left(P_{n}\right)=3$
- $\chi_{g}\left(C_{n}\right)=3$
- The stars $K_{1, p}$ with $p \geq 1$ are the only connected graphs satisfying $\chi_{g}(G)=2$

Simple results

- $\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1$
- $\chi_{g}\left(K_{n}\right)=n$
- $\chi_{g}\left(S_{n}\right)=1$
- $\chi_{g}\left(P_{1}\right)=1, \chi_{g}\left(P_{2}\right)=\chi_{g}\left(P_{3}\right)=2$
- For $n \geq 4$, we have that $\chi_{g}\left(P_{n}\right)=3$
- $\chi_{g}\left(C_{n}\right)=3$
- The stars $K_{1, p}$ with $p \geq 1$ are the only connected graphs satisfying $\chi_{g}(G)=2$

Different graph classes studied

- planar graphs: $7 \leq \chi_{g}(P) \leq 17$;
- outerplanar graphs: $6 \leq \chi_{g}(O) \leq 7$;
- toroidal grids: $\chi_{g}(T G)=5$;
- partial k-trees: $\chi_{g}(P) \leq 3 k+2$;
- the cartesian products of some classes of graphs: for example, $\chi_{g}\left(T_{1} \square T_{2}\right) \leq 12$;

Literature for trees

- Bodlaender (1991): $\chi_{g}(T) \leq 5$.
- Faigle et al. (1993): $\chi_{g}(F) \leq 4$.

- Dunn et al.(2015): criteria for determining $\chi_{g}(F)$, for a forest without vertex of degree 3, in polynomial time.

Literature for trees

- Bodlaender (1991): $\chi_{g}(T) \leq 5$.
- Faigle et al. (1993): $\chi_{g}(F) \leq 4$.
- Dunn et al.(2015): criteria for determining $\chi_{g}(F)$, for a forest without vertex of degree 3, in polynomial time.

Literature for trees

- Bodlaender (1991): $\chi_{g}(T) \leq 5$.
- Faigle et al. (1993): $\chi_{g}(F) \leq 4$.
- Dunn et al.(2015): criteria for determining $\chi_{g}(F)$, for a forest without vertex of degree 3, in polynomial time.

Our problem

- Due to the difficulty concerning this subject, the problem of characterizing forests with $\chi_{g}(F)=3$ remains open.
- In our work, we contribute to this study by analyzing the caterpillar.

Our problem

- Due to the difficulty concerning this subject, the problem of characterizing forests with $\chi_{g}(F)=3$ remains open.
- In our work, we contribute to this study by analyzing the caterpillar.

Why caterpillars again?

- Example presented in Bodlaender (1991) to prove the existence of a tree H_{d} with $\chi_{g}\left(H_{d}\right) \geq 4$:

Why caterpillars again?

- Example presented in Bodlaender (1991) to prove the existence of a tree H_{d} with $\chi_{g}\left(H_{d}\right) \geq 4$:

Why caterpillars again?

- Example presented in Bodlaender (1991) to prove the existence of a tree H_{d} with $\chi_{g}\left(H_{d}\right) \geq 4$:

- Dunn et al.(2015) proved that this caterpillar is the smallest tree such that $\chi_{g}(T)=4$.
- We are interested in characterizing when $\chi_{g}(H)$ is 3 or 4.

Why caterpillars again?

- Example presented in Bodlaender (1991) to prove the existence of a tree H_{d} with $\chi_{g}\left(H_{d}\right) \geq 4$:

- Dunn et al.(2015) proved that this caterpillar is the smallest tree such that $\chi_{g}(T)=4$.
- We are interested in characterizing when $\chi_{g}(H)$ is 3 or 4.

Claw

Our new parameters

- The game chromatic number is:
- $\chi_{g}^{a}(G)$ (or simply $\chi_{g}(G)$): when Alice starts the game;
- $\chi_{g}^{b}(G):$ when Bob starts the game!
- $\chi_{g}(G, Z)$: when Alice starts the game in the partially colored graph G, for Z a set of vertices of $V(G)$ such that for all $v \in Z, c(v) \neq \emptyset$.

Sufficient conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H^{\prime}, such that $\chi_{g}^{a}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Sufficient conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H^{\prime}, such that $\chi_{g}^{a}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Sufficient conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H^{\prime}, such that $\chi_{g}^{a}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Theorem

If a caterpillar H has two induced subcaterpillars H^{\prime} and $H^{\prime \prime}$, such that $\chi_{g}^{b}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime \prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Sufficient conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has an induced subcaterpillar H^{\prime}, such that $\chi_{g}^{a}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Theorem

If a caterpillar H has two induced subcaterpillars H^{\prime} and $H^{\prime \prime}$, such that $\chi_{g}^{b}\left(H^{\prime}\right)=\chi_{g}^{b}\left(H^{\prime \prime}\right)=4$, then $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$.

Necessary conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has $\chi_{g}(H)=4$, then H has at least four vertices of degree at least 4.

Theorem

If H is a minimal caterpillar with respect to $\chi_{g}^{a}(H)=4$, then H does not have consecutive vertices of degree 2, unless H has two edge disjoint induced subcaterpillars H^{\prime} and $H^{\prime \prime}$ that are minimal with respect to $\chi_{g}^{b}\left(H^{\prime}\right)=4$ and $\chi_{g}^{b}\left(H^{\prime \prime}\right)=4$.

Necessary conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has $\chi_{g}(H)=4$, then H has at least four vertices of degree at least 4.

Theorem

If H is a minimal caterpillar with respect to $\chi_{g}^{a}(H)=4$, then H does not have consecutive vertices of degree 2, unless H has two edge disjoint induced subcaterpillars H^{\prime} and $H^{\prime \prime}$ that are minimal with respect to $\chi_{g}^{b}\left(H^{\prime}\right)=4$ and $\chi_{g}^{b}\left(H^{\prime \prime}\right)=4$.

High degree vertices (degree of at least 4) are important to have $\chi_{g}(H)=4$.

Necessary conditions for $\chi_{g}(H)=4$ for any caterpillar H

Theorem

If a caterpillar H has $\chi_{g}(H)=4$, then H has at least four vertices of degree at least 4.

Theorem

If H is a minimal caterpillar with respect to $\chi_{g}^{a}(H)=4$, then H does not have consecutive vertices of degree 2, unless H has two edge disjoint induced subcaterpillars H^{\prime} and $H^{\prime \prime}$ that are minimal with respect to $\chi_{g}^{b}\left(H^{\prime}\right)=4$ and $\chi_{g}^{b}\left(H^{\prime \prime}\right)=4$.

High degree vertices (degree of at least 4) are important to have $\chi_{g}(H)=4$.

Low degree vertices (degree 2) are important to have $\chi_{g}(H) \leq 3$.

Four infinite families

- Caterpillars
- with maximum degree 3;
- without vertex of degree 2 ;

Four infinite families

- Caterpillars
- with maximum degree 3 ;
- without vertex of degree 2;
- without vertex of degree 3 ;

Four infinite families

- Caterpillars
- with maximum degree 3 ;
- without vertex of degree 2 ;
- without vertex of degree 3;
- with vertices of degree $1,2,3$ and 4

Four infinite families

- Caterpillars
- with maximum degree 3 ;
- without vertex of degree 2 ;
- without vertex of degree 3 ;
- with vertices of degree 1, 2, 3 and 4 .

Four infinite families

- Caterpillars
- with maximum degree 3 ;
- without vertex of degree 2 ;
- without vertex of degree 3 ;
- with vertices of degree $1,2,3$ and 4 .

Caterpillar with maximum degree 3

Theorem (H with $\Delta(H)=3$)

Let H be the caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$ with $\Delta(H)=3$. We have that H has $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$. Moreover, let F be the forest where each connected component is a caterpillar and $\Delta(F)=3$. We have that F has $\chi_{g}^{a}(F) \leq 3$.

Caterpillar with maximum degree 3

Theorem (H with $\Delta(H)=3$)

Let H be the caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$ with $\Delta(H)=3$. We have that H has $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$. Moreover, let F be the forest where each connected component is a caterpillar and $\Delta(F)=3$. We have that F has $\chi_{g}^{a}(F) \leq 3$.

We use 3 claims to prove the theorem and the proof of each one follows by induction.

Caterpillar with maximum degree 3

Theorem (H with $\Delta(H)=3$)

Let H be the caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$ with $\Delta(H)=3$. We have that H has $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$. Moreover, let F be the forest where each connected component is a caterpillar and $\Delta(F)=3$. We have that F has $\chi_{g}^{a}(F) \leq 3$.

We use 3 claims to prove the theorem and the proof of each one follows by induction.
Claim 1) If $Z=\left\{v_{1}, v_{s}\right\}$, then $\chi_{g}^{a}(H, Z), \chi_{g}^{b}(H, Z) \leq 3$, except for the caterpillars with s odd, which has $\chi_{g}^{b}(H, Z) \leq 4$.

Caterpillar with maximum degree 3

Theorem (H with $\Delta(H)=3$)

Let H be the caterpillar $\operatorname{cat}\left(k_{1}, \ldots, k_{s}\right)$ with $\Delta(H)=3$. We have that H has $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$. Moreover, let F be the forest where each connected component is a caterpillar and $\Delta(F)=3$. We have that F has $\chi_{g}^{a}(F) \leq 3$.

We use 3 claims to prove the theorem and the proof of each one follows by induction.
Claim 1) If $Z=\left\{v_{1}, v_{s}\right\}$, then $\chi_{g}^{a}(H, Z), \chi_{g}^{b}(H, Z) \leq 3$, except for the caterpillars with s odd, which has $\chi_{g}^{b}(H, Z) \leq 4$.
Claim 2) If $Z=\left\{v_{1}\right\}$, then $\chi_{g}^{a}(H, Z), \chi_{g}^{b}(H, Z) \leq 3$.

Caterpillar with maximum degree 3

Theorem (H with $\Delta(H)=3$)

Let H be the caterpillar $\operatorname{cat}\left(k_{1}, \ldots, k_{s}\right)$ with $\Delta(H)=3$. We have that H has $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$. Moreover, let F be the forest where each connected component is a caterpillar and $\Delta(F)=3$. We have that F has $\chi_{g}^{a}(F) \leq 3$.

We use 3 claims to prove the theorem and the proof of each one follows by induction.
Claim 1) If $Z=\left\{v_{1}, v_{s}\right\}$, then $\chi_{g}^{a}(H, Z), \chi_{g}^{b}(H, Z) \leq 3$, except for the caterpillars with s odd, which has $\chi_{g}^{b}(H, Z) \leq 4$.
Claim 2) If $Z=\left\{v_{1}\right\}$, then $\chi_{g}^{a}(H, Z), \chi_{g}^{b}(H, Z) \leq 3$.
Claim 3) We have that $\chi_{g}^{a}(H), \chi_{g}^{b}(H) \leq 3$.

Two claws

Color 1
Color 2

3
4

Color 1

4
4

Color 1
Color 1 or 2

3
4

3
4
\&coppe UFRJ

46 / 69

Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one vertex of degree 4. We have that $\chi_{g}^{b}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one vertex of degree 4. We have that $\chi_{g}^{b}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4

4

4

4

Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one vertex of degree 4. We have that $\chi_{g}^{b}(H, Z)=4$, where
$Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4
$47 / 69$

Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two vertice of degree 4. We have that $\chi_{g}^{b}(H, Z)=\chi_{g}^{a}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4

Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two vertice of degree 4. We have that $\chi_{g}^{b}(H, Z)=\chi_{g}^{a}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4

Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two vertice of degree 4. We have that $\chi_{g}^{b}(H, Z)=\chi_{g}^{a}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4

Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two vertice of degree 4. We have that $\chi_{g}^{b}(H, Z)=\chi_{g}^{a}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

COPPE
$48 / 69$

Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two vertice of degree 4. We have that $\chi_{g}^{b}(H, Z)=\chi_{g}^{a}(H, Z)=4$, where $Z=\left\{v_{1}, v_{s} \mid c\left(v_{1}\right) \neq c\left(v_{s}\right)\right\}$.

4

Caterpillar without vertex of degree 2

Theorem

Let H be the caterpillar without vertex of degree 2. We have that $\chi_{g}^{a}(H)=\chi_{g}^{b}(H)=4$ if, and only if, H is caterpillar cat $\left(k_{1}, \ldots, k_{s}\right)$, such that $k_{1}=k_{s}=0, k_{i} \neq 0, \forall i \in\{2, \ldots, s-1\}$, and there are at least four vertices of degree at least 4.
$49 / 69$

Proof of Theorem (H without vertex of degree 2)

\Rightarrow By the necessary condition for $\chi_{g}(H)=4$.
\Leftarrow

©cope

Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars $H_{d}, H_{33}, H_{[\alpha]} \cup H_{[\beta]}, H_{[\alpha][\beta]}$ and $H_{[\alpha] 3[\beta]}$.

Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars $H_{d}, H_{33}, H_{[\alpha]} \cup H_{[\beta]}, H_{[\alpha][\beta]}$ and $H_{[\alpha] 3[\beta]}$.
(a)

(b)

(c)

(d)

Figure: Caterpillars (a) H_{33} (b) $H_{[3]}$ (c) $H_{[3][4]}$ (d) $H_{[3] 3[4]}$.

Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars $H_{d}, H_{33}, H_{[\alpha]} \cup H_{[\beta]}, H_{[\alpha][\beta]}$ and $H_{[\alpha] 3[\beta]}$.
(a)

(b)

(c)

(d)

Figure: Caterpillars (a) H_{33} (b) $H_{[3]}$ (c) $H_{[3][4]}$ (d) $H_{[3] 3[4]}$.

Theorem

A caterpillar H without vertex of degree 3 has $\chi_{g}(H)=4 i f$, and only if, H has a caterpillar of Family Q as an induced subcaterpillar.

Caterpillar with vertices of degree 1,2,3 and 4

Let Family Q^{\prime} be the set of caterpillars $\left\{H_{[\alpha]}^{\prime} \cup H_{[\beta]}^{\prime}, H_{[\alpha]}^{\prime} \cup H_{3}, H_{3} \cup H_{3}\right.$, H_{22}^{\prime} and $\left.H_{[\alpha][\beta]}^{\prime}, H_{23}^{\prime}\right\}$.

Caterpillar with vertices of degree 1,2,3 and 4

Let Family Q^{\prime} be the set of caterpillars $\left\{H_{[\alpha]}^{\prime} \cup H_{[\beta]}^{\prime}, H_{[\alpha]}^{\prime} \cup H_{3}, H_{3} \cup H_{3}\right.$, H_{22}^{\prime} and $\left.H_{[\alpha][\beta]}^{\prime}, H_{23}^{\prime}\right\}$.
(a)

(b)

(c)

(d)

(e)

Figure: Caterpillars (a) $H_{[6]}^{\prime}$ (b) H_{3}^{\prime} (c) H_{22}^{\prime} (d) $H_{[6[]]]}$ (e) H_{23}^{\prime}.

Caterpillar with vertices of degree 1,2,3 and 4

Let Family Q^{\prime} be the set of caterpillars $\left\{H_{[\alpha]}^{\prime} \cup H_{[\beta]}^{\prime}, H_{[\alpha]}^{\prime} \cup H_{3}, H_{3} \cup H_{3}\right.$, H_{22}^{\prime} and $\left.H_{[\alpha][\beta]}^{\prime}, H_{23}^{\prime}\right\}$.
(a)

(b) $\downarrow 111111$
(c)

(d)

(e)

Figure: Caterpillars (a) $H_{[6]}^{\prime}$ (b) H_{3}^{\prime} (c) H_{22}^{\prime} (d) $H_{[6][3]}$ (e) H_{23}^{\prime}.

Theorem

Let H be a caterpillar with vertices of 1,2,3 and 4. If H has a caterpillar of Family Q^{\prime} as a induced subcaterpillar, then $\chi_{g}(H)=4$.

Summary

$\Delta(G)$	$\chi_{g}(G)=1$	$\chi_{g}(G)=2$	$\chi_{g}(G)=3$	$\chi_{g}(G)=4$
0	P_{1}	-	-	-
1	-	P_{2}	-	-
2	-	P_{3}	$P_{n}, n \geq 4$	-
3	-	star	not a star	-
4	-	star	see next Figure	see next Figure

Summary

Figure: Caterpillars with $\Delta(H)=4$ and $\chi_{g}(H)=4$.

$\chi_{g}(F)$

Theorem

Let F be a forest composed by r trees T_{1}, \ldots, T_{r}. Assume that $\chi_{g}^{a}\left(T_{1}\right) \leq \chi_{g}^{a}\left(T_{2}\right) \leq \ldots \leq \chi_{g}^{a}\left(T_{r}\right)$, and, if there exist two trees with the same game chromatic number, then T_{i} and T_{j} are ordered in a way that $\chi_{g}^{b}\left(T_{i}\right) \leq \chi_{g}^{b}\left(T_{j}\right)$, for $i<j$. We have that:
(1) If $\chi_{g}^{b}\left(T_{r}\right)>\chi_{g}^{a}\left(T_{r}\right), \chi_{g}^{b}\left(T_{r-1}\right)$, then $\chi_{g}(F)=\chi_{g}^{a}\left(T_{r}\right)$;
(2) If $\chi_{g}^{b}\left(T_{r}\right)=\chi_{g}^{b}\left(T_{r-1}\right)>\chi_{g}^{a}\left(T_{r}\right)$, then $\chi_{g}(F)=\chi_{g}^{b}\left(T_{r}\right)$;
(3) If $\chi_{g}^{a}\left(T_{r}\right)=\chi_{g}^{b}\left(T_{r}\right)$, then $\chi_{g}(F)=\chi_{g}^{a}\left(T_{r}\right)=\chi_{g}^{b}\left(T_{r}\right)$;
(9) If $\chi_{g}^{b}\left(T_{r}\right)<\chi_{g}^{a}\left(T_{r}\right)$ and $\sum_{i=1}^{r-1}\left|V\left(T_{i}\right)\right|$ is even, then $\chi_{g}(F)=\chi_{g}^{a}\left(T_{r}\right)$;
(5) If $\chi_{g}^{b}\left(T_{r}\right)<\chi_{g}^{a}\left(T_{r}\right)$ and $\sum_{i=1}^{r-1}\left|V\left(T_{i}\right)\right|$ is odd, then $\chi_{g}(F)=$ $\max \left\{\chi_{g}^{a}\left(F \backslash T_{r}\right), \chi_{g}^{b}\left(T_{r}\right)\right\}$.

Conclusion: Coloring Game

It is a reduction problem.

Conclusion: Coloring Game

It is a reduction problem.

We are able to characterize evil, indifferent and good subgraphs for Alice to win the game with 3 colors in caterpillars.

Presentations and submissions

Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Schimidt, S., The Game Chromatic Number of Caterpillars. In proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, Santiago (2016).

Nordhaus-Gaddum type inequalities

What are Nordhaus-Gaddum type inequalities?

- Nordhaus and Gaddum (1956) showed lower and upper bounds on the sum of the chromatic number of a graph and its complement:

What are Nordhaus-Gaddum type inequalities?

- Nordhaus and Gaddum (1956) showed lower and upper bounds on the sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$. These bounds are best possible for infinitely many values of n.

- Survey by Aouiche and Hansen (2013): 360 articles.

What are Nordhaus-Gaddum type inequalities?

- Nordhaus and Gaddum (1956) showed lower and upper bounds on the sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$. These bounds are best possible for infinitely many values of n.

- Survey by Aouiche and Hansen (2013): 360 articles.
- To the best of our knowledge, the only Nordhaus-Gaddum type inequality existing for invariants related to games on graphs is by Alon et al.(2002) and concerns the game domination number.

What are Nordhaus-Gaddum type inequalities?

- Nordhaus and Gaddum (1956) showed lower and upper bounds on the sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$. These bounds are best possible for infinitely many values of n.

- Survey by Aouiche and Hansen (2013): 360 articles.
- To the best of our knowledge, the only Nordhaus-Gaddum type inequality existing for invariants related to games on graphs is by Alon et al.(2002) and concerns the game domination number.

Nordhaus-Gaddum type inequalities to $\chi_{g}(G)+\chi_{g}(\bar{G})$: Theorem 4.4

Theorem

Nordhaus and Gaddum For any graph G of order n, we have that $2 \sqrt{n} \leq \chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$. Moreover, the bounds are best possible asymptotically:
(1) for infinitely many values of n, there are graphs G of order n with

$$
\chi_{g}(G)+\chi_{g}(\bar{G})=\left\lceil\frac{4 n}{3}\right\rceil-1
$$

(2) for infinitely many values of n, there are graphs G of order n with

$$
\chi_{g}(G)+\chi_{g}(\bar{G})=2 \sqrt{2 n}-1
$$

Nordhaus-Gaddum type inequalities to $\chi_{g}(G)+\chi_{g}(\bar{G})$:

 Theorem 4.4
Theorem

Nordhaus and Gaddum For any graph G of order n, we have that $2 \sqrt{n} \leq \chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$. Moreover, the bounds are best possible asymptotically:
(1) for infinitely many values of n, there are graphs G of order n with

$$
\chi_{g}(G)+\chi_{g}(\bar{G})=\left\lceil\frac{4 n}{3}\right\rceil-1
$$

(2) for infinitely many values of n, there are graphs G of order n with $\chi_{g}(G)+\chi_{g}(\bar{G})=2 \sqrt{2 n}-1$.

The lower bound follows from Theorem of Nordhaus and Gaddum (1965) and the inequality $\chi(G) \leq \chi_{g}(G)$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.1) $b+c<\left\lceil\frac{n}{4}\right\rceil$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.1) $b+c<\left\lceil\frac{n}{4}\right\rceil$.
Just vertices in $A(G)$ can be not colored and they do not need any different color, and $\chi_{g}(G) \leq \frac{n}{2}$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.1) $b+c<\left\lceil\frac{n}{4}\right\rceil$.
As $\chi_{g}(\bar{G}) \leq n$, then $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq \frac{3 n}{2}$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.2) $a<\left\lceil\frac{n}{4}\right\rceil$. As in case 1.1, $\chi_{g}(\bar{G}) \leq \frac{n}{2}$ and $\chi_{g}(G) \leq n$. So, $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq \frac{3 n}{2}$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.3) $a \geq\left\lceil\frac{n}{4}\right\rceil$ and $b+c \geq\left\lceil\frac{n}{4}\right\rceil$. There are at most $b+c-\left\lceil\frac{n}{4}\right\rceil$ uncolored vertices in $B(G) \cup C(G)$. If there are uncolored vertices in $A(G)$, they do not need any different color.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.3) $a \geq\left\lceil\frac{n}{4}\right\rceil$ and $b+c \geq\left\lceil\frac{n}{4}\right\rceil$. There are at most $b+c-\left\lceil\frac{n}{4}\right\rceil$ uncolored vertices in $B(G) \cup C(G)$. If there are uncolored vertices in $A(G)$, they do not need any different color.
So, $\chi_{g}(G) \leq \frac{n}{2}+b+c-\left\lceil\frac{n}{4}\right\rceil$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.3) $a \geq\left\lceil\frac{n}{4}\right\rceil$ and $b+c \geq\left\lceil\frac{n}{4}\right\rceil$. There are at most $b+c-\left\lceil\frac{n}{4}\right\rceil$ uncolored vertices in $B(G) \cup C(G)$. If there are uncolored vertices in $A(G)$, they do not need any different color.
Using exactly the same idea in $\bar{G}, \chi_{g}(\bar{G}) \leq \frac{n}{2}+a-\left\lceil\frac{n}{4}\right\rceil$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 1.3) $a \geq\left\lceil\frac{n}{4}\right\rceil$ and $b+c \geq\left\lceil\frac{n}{4}\right\rceil$. There are at most $b+c-\left\lceil\frac{n}{4}\right\rceil$ uncolored vertices in $B(G) \cup C(G)$. If there are uncolored vertices in $A(G)$, they do not need any different color.
$\chi_{g}(G)+\chi_{g}(\bar{G}) \leq \frac{n}{2}+b+c-\left\lceil\frac{n}{4}\right\rceil+\frac{n}{2}+a-\left\lceil\frac{n}{4}\right\rceil \leq \frac{3 n}{2}$.

Proof for the upper bound $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$

Case 1) n is even.

In G, Alice begins by coloring only in $B(G) \cup C(G)$ until those vertices are all colored. Assume that $\frac{n}{2}$ colors are used.
Case 2) n is odd is similar and $\chi_{g}(G)+\chi_{g}(\bar{G}) \leq\left\lceil\frac{3 n}{2}\right\rceil$.

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{I} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.
$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{I} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$
and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.
Alice colors first in the clique.

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$61 / 69$

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

Alice colors first in the clique.

$4 \square>4$ 盀 1 4

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

When Alice finishes to color the vertices of the clique, she has played $\left\lceil\frac{1}{2}\right\rceil$ times, and Bob $\left\lceil\frac{1}{2}\right\rceil-1$ times.

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

When Alice finishes to color the vertices of the clique, she has played $\left\lceil\frac{1}{2}\right\rceil$ times, and Bob $\left\lceil\frac{1}{2}\right\rceil-1$ times.
$\chi_{g}\left(G_{l}\right)=2\left\lceil\frac{l}{2}\right\rceil-1$.

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{l} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

When Alice finishes to color the vertices of the clique, she has played $\left\lceil\frac{1}{2}\right\rceil$ times, and Bob $\left\lceil\frac{1}{2}\right\rceil-1$ times.
$\chi_{g}\left(G_{l}\right)=2\left\lceil\frac{I}{2}\right\rceil-1$.
$\overline{G_{l}}$ is composed by a clique K_{l} and a stable set $S_{\left\lceil\frac{1}{2}\right\rceil} \Rightarrow \chi_{g}\left(\overline{G_{l}}\right)=I$.

Construction of family 1 of the Theorem 4.4

Lemma

Let G_{I} be the graph join $S_{I} \oplus K_{\left\lceil\frac{1}{2}\right\rceil}$, with order $n=I+\left\lceil\frac{I}{2}\right\rceil \not \equiv 1 \bmod 3$ and $n \geq 5$. We have that $\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=\left\lceil\frac{4 n}{3}\right\rceil-1$.

When Alice finishes to color the vertices of the clique, she has played $\left\lceil\frac{1}{2}\right\rceil$ times, and Bob $\left\lceil\frac{1}{2}\right\rceil-1$ times.
$\chi_{g}\left(G_{l}\right)=2\left\lceil\frac{I}{2}\right\rceil-1$.
$\overline{G_{l}}$ is composed by a clique K_{l} and a stable set $S_{\left\lceil\frac{1}{2}\right\rceil} \Rightarrow \chi_{g}\left(\overline{G_{l}}\right)=1$.
$\chi_{g}\left(G_{l}\right)+\chi_{g}\left(\overline{G_{l}}\right)=2\left\lceil\frac{I}{2}\right\rceil+I-1$.

Family 2 of the Theorem 4.4

Lemma

Let G be a complete $\sqrt{\frac{n}{2}}$-partite graph, such that $\sqrt{\frac{n}{2}}$ is an even integer and each $\sqrt{\frac{n}{2}}$ disjoint set of vertices has exactly $\sqrt{2 n}$ vertices. We have that $\chi_{g}(G)+\chi_{g}(\bar{G})=2 \sqrt{2 n}-1$.

Nordhaus-Gaddum type inequalities to other games

- We determine the Nordhaus-Gaddum type inequalities to
- the number of P-positions of a caterpillar (Timber Game); - the game coloring number of any graph G (Marking Game)

Nordhaus-Gaddum type inequalities to other games

- We determine the Nordhaus-Gaddum type inequalities to
- the number of P-positions of a caterpillar (Timber Game);
- the game coloring number of any graph G (Marking Game).

Nordhaus-Gaddum type inequalities to other games

- We determine the Nordhaus-Gaddum type inequalities to
- the number of P-positions of a caterpillar (Timber Game);
- the game coloring number of any graph G (Marking Game).
- Marking Game is "colorblind" version of the coloring game.
- All bounds are tight, except the upper bound for the number of P-positions of a caterpillar.

Nordhaus-Gaddum type inequalities to other games

- We determine the Nordhaus-Gaddum type inequalities to
- the number of P-positions of a caterpillar (Timber Game);
- the game coloring number of any graph G (Marking Game).
- Marking Game is "colorblind" version of the coloring game.
- All bounds are tight, except the upper bound for the number of P-positions of a caterpillar.

Nordhaus-Gaddum type inequalities to other games

- We determine the Nordhaus-Gaddum type inequalities to
- the number of P-positions of a caterpillar (Timber Game);
- the game coloring number of any graph G (Marking Game).
- Marking Game is "colorblind" version of the coloring game.
- All bounds are tight, except the upper bound for the number of P-positions of a caterpillar.

Submission

(0) Charpentier, C., Furtado, A., Dantas, S., Figueiredo, C., Gravier, On Nordhaus-Gaddum type inequalities for the Game Chromatic and Game Coloring numbers. Submitted to Discrete Maths. (2018)

Current and Future work: Timber Game

Conjecture

The number of P-positions of family 1 is: $\frac{2(s-a+1)}{a-1}\binom{s-1}{(a-3) / 2}$.

- Is there a simpler formula for the number of P-positions of family 3 without the use of summation?
- Given any caterpillar, is there a polynomial algorithm to determine its number of P-positions?

Current and Future work: Timber Game

Conjecture

The number of P-positions of family 1 is: $\frac{2(s-a+1)}{a-1}\binom{s-1}{(a-3) / 2}$.

- Is there a simpler formula for the number of P-positions of family 3 without the use of summation?
- Given any caterpillar, is there a polynomial algorithm to determine its number of P-positions?

Current and Future work: Coloring Game

Theorem

The caterpillar $H_{[\alpha]}^{\prime}$ is the unique caterpillar with vertices of degree 1, 2, 3 and 4 satisfying $\chi_{g}^{a}\left(H_{[\alpha]}^{\prime}\right)=3$ and that is minimal with respect to $\chi_{g}^{b}\left(H_{[\alpha]}^{\prime}\right)=4 . \quad \checkmark$ (LAWCG 2018)

Current and Future work: Coloring Game

Theorem

The caterpillar $H_{[\alpha]}^{\prime}$ is the unique caterpillar with vertices of degree 1, 2, 3 and 4 satisfying $\chi_{g}^{a}\left(H_{[\alpha]}^{\prime}\right)=3$ and that is minimal with respect to $\chi_{g}^{b}\left(H_{[\alpha]}^{\prime}\right)=4 . \quad \checkmark$ (LAWCG 2018)

Conjecture

If H is a caterpillar with vertices of degree 1, 2, 3 and 4, and is minimal with respect to $\chi_{g}(H)=4$, then H is a caterpillar of Family Q^{\prime}.

Current and Future work: Coloring Game

Theorem

The caterpillar $H_{[\alpha]}^{\prime}$ is the unique caterpillar with vertices of degree 1, 2, 3 and 4 satisfying $\chi_{g}^{a}\left(H_{[\alpha]}^{\prime}\right)=3$ and that is minimal with respect to $\chi_{g}^{b}\left(H_{[\alpha]}^{\prime}\right)=4 . \quad \checkmark$ (LAWCG 2018)

Conjecture

If H is a caterpillar with vertices of degree 1, 2, 3 and 4, and is minimal with respect to $\chi_{g}(H)=4$, then H is a caterpillar of Family Q^{\prime}.

Conjecture

$\chi_{g}^{a}(T) \leq \chi_{g}^{b}(T)$, for a tree T, except for $T=P_{4}$.

Current and Future work: Nordhauss-Gaddum

- Is it possible to improve the upper bound for the number of P-positions in a caterpillar so that the bound is tight?
- Is it possible to find extremal graphs for the lower and upper bounds for the number of P-positions in a caterpillar, the game chromatic and coloring numbers in any graph?

Current and Future work: Nordhauss-Gaddum

- Is it possible to improve the upper bound for the number of P-positions in a caterpillar so that the bound is tight?
- Is it possible to find extremal graphs for the lower and upper bounds for the number of P-positions in a caterpillar, the game chromatic and coloring numbers in any graph?

Current and Future work in general

- Apply the games in high school, college classes and events of the popularization of mathematics.

THANK YOU!

