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@ Combinatorial Games

© Timber Game

© Coloring Game

@ Nordhaus-Gaddum type inequalities
© Current and future work
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@ Many researchers have been studying winning strategies in 2-player
combinatorial games.

gCOPPE
UFRJ



@ Many researchers have been studying winning strategies in 2-player
combinatorial games.

@ We study the Timber Game, Coloring Game and their structural
properties in a caterpillar.
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@ Many researchers have been studying winning strategies in 2-player
combinatorial games.

@ We study the Timber Game, Coloring Game and their structural
properties in a caterpillar.

@ Moreover, we study the Nordhaus-Gaddum type inequality to the
parameters of these games.
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Why games?

Figure: Salon International de la Culture
et des jeux mathématiques, Paris, 2015.

Figure: Festival da Matemdtica, Rio de
Janeiro, 2017.
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Timber Game
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What is Timber game?

@ In 1984, a video game called timber was released.
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What is Timber game?

@ In 1984, a video game called timber was released.

@ In 2013, this game was treated as a combinatorial game modeled with
graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.
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What is Timber game?

@ In 1984, a video game called timber was released.

@ In 2013, this game was treated as a combinatorial game modeled with
graphs by Nowakovski, Renault, Lamoureux, Mellon and Miller.
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What is Timber game?

@ Timber is played on a digraph D = (V, E) with a domino on each
arc.
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What is Timber game?

@ Timber is played on a digraph D = (V, E) with a domino on each
arc.

o If one domino is toppled, it topples the dominoes in the direction it
was toppled and creates a chain reaction.
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What is Timber game?

@ Timber is played on a digraph D = (V, E) with a domino on each
arc.

@ If one domino is toppled, it topples the dominoes in the direction it
was toppled and creates a chain reaction.

@ The orientation of the arc represents the available movement of the
domino piece.
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How to play?

®
® ) O
© ®
What remains after toppling (3,2)
© Q
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How to play?

What remains after toppling (6,5)

gCOPPE
UFRJ



@ The player who topples all the last dominoes wins.
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@ The player who topples all the last dominoes wins.

@ In the last example, player 1 wins if he topples arc (3, 2):
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@ The player who topples all the last dominoes wins.

@ In the last example, player 1 wins if he topples arc (3, 2):

What remains after toppling (3,2)
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@ A P-position is a configuration D in which the second player wins,
independently of how the first player plays.
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@ A P-position is a configuration D in which the second player wins,
independently of how the first player plays.

@ The last example is not a P-position, because there is a winning
strategy for the first player.
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@ A P-position is a configuration D in which the second player wins,
independently of how the first player plays.

@ The last example is not a P-position, because there is a winning
strategy for the first player.

@ An oriented cycle is not a P-position.
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@ A P-position is a configuration D in which the second player wins,
independently of how the first player plays.

The last example is not a P-position, because there is a winning
strategy for the first player.

@ An oriented cycle is not a P-position.

The study of Timber Game is only interesting in trees.
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Path G with 3 vertices:

O—G6——~0

Configurations of G:

@4_@4_@ Player 1 wins
@—)@—>@ Player 1 wins

@—)@4—@ Player 1 wins
®<_@_>® Player 2 wins

Figure: There is just 1 P-position.
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Known results for paths (Nowakowski et al., 2013)

o Considering isomorphisms, we have:

edges(m) |1][2|3|4|5|6|7|8 9|10
P-positions |0 |1 |0 |2 |0|5|0|14 0] 42
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Known results for paths (Nowakowski et al., 2013)

@ Considering isomorphisms, we have:

edges(m) |1][2|3|4|5|6|7|8 9|10
P-positions |0 |1 |0 |2 |0|5|0|14 0] 42

@ Then, the number of P-positions of a path with m edges is given by:
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Known results for paths (Nowakowski et al., 2013)

@ Considering isomorphisms, we have:

edges(m) |1][2|3|4|5|6|7|8 9|10
P-positions |0 |1 |0 |2 |0|5|0|14 0] 42

@ Then, the number of P-positions of a path with m edges is given by:
e 0 ;(if){n is odd;

° W if mis even.
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Known results for paths (Nowakowski et al., 2013)

@ Considering isomorphisms, we have:

edges(m) |1][2|3|4|5|6|7|8 9|10
P-positions |0 |1 |0 |2 |0|5|0|14 0] 42

@ Then, the number of P-positions of a path with m edges is given by:
e 0:if mis odd;

° % if mis even.

@ Sequence of Catalan.
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Known results for trees (Nowakowski et al., 2013): Lemma

1 - a decision lemma

Figure: The first player wins toppling the piece (v, u)
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Known results for trees (Nowakowski et al., 2013):

Lemmas 2 and 3 - reduction lemmas

(@) (b)

Figure: The digraph in (a) is a P-position iff the digraph in (b) is a P-position.
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Known results for trees (Nowakowski et al., 2013):

Lemmas 2 and 3 - reduction lemmas

D@ ‘
‘Q @ —@D—@ 002>

—@—0—0—0®

(@) (b)
Figure: The digraph in (a) is a P-position iff the digraph in (b) is a P-position.
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The importance of theses Lemmas

@ These three lemmas compose the steps of a polynomial algorithm to
decide if an oriented tree is or is not a P-position, presented in
Nowakowski et al. (2013).
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Theorem [DAM 2017]
A tree has a P-position if, and only if, it has an even number of edges. \
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Theorem [DAM 2017]

A tree has a P-position if, and only if, it has an even number of edges.

@ (=) If a tree has a P-position, then the configuration that is a
P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7
and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number
of edges.
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Theorem [DAM 2017]

A tree has a P-position if, and only if, it has an even number of edges.

@ (=) If a tree has a P-position, then the configuration that is a
P-position can be reduced to a single vertex (0 arcs), by Lemmas 2.7
and 2.8. But Lemmas 2.7 and 2.8 maintain the parity of the number
of edges.

@ (<) We have an algorithm that assures us that there is always at
least 1 P-position.

gCOPPE
UFRJ

16 /69



@ What a happy surprise! As with paths, in a tree, if the number of
edges is odd, then there is no P-position.
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@ What a happy surprise! As with paths, in a tree, if the number of
edges is odd, then there is no P-position.

@ Is there a unique formula to provide us the number of P-positions of
a tree?
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What will we do?

In order to contribute to the open problem of determining the number of
P-positions of a tree, we study the case when G is a caterpillar.
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What will we do?

In order to contribute to the open problem of determining the number of
P-positions of a tree, we study the case when G is a caterpillar.
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Caterpillar

e A caterpillar cat(ky, ko, ..., ks) is a tree which is obtained from a
central path vy, vo, v3, ..., vs (called spine), and by joining v; to k; new
vertices, i = 1,...,s. Thus, the number of vertices is
n:s+k1+k2+...+k5.

@ L 4 L J

Figure: cat(2,0,1,0,3,0).
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Theorem [DAM 2017]

Let H be a caterpillar cat(ki,...,ks), for ki € Z,i =1,...,s. The number
of P-positions of H is equal to the number of P-positions of a caterpillar
cat(h, ..., Is), such that if k; is even, then I; = 0, and if k; is odd, then

=1, fori=1,..,5s.

A

Figure: cat(2,0,1,0,3,0) is equivalent to cat(0,0,1,0,1,0).
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Goal of the study in caterpillars

@ We want to determine the number of P-positions of any caterpillar.
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Goal of the study in caterpillars

@ We want to determine the number of P-positions of any caterpillar.

a, b a; b

@ We know that if the number of edges in a tree is odd, then the tree
does not have P-positions.

&COPPE
UFRJ

21 /69



Goal of the study in caterpillars

@ We want to determine the number of P-positions of any caterpillar.

a, b a; b

@ We know that if the number of edges in a tree is odd, then the tree
does not have P-positions.

@ So let's investigate only caterpillars with an even number of edges.
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Family 1: caterpillar to solve the general case (?)
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Family 1: caterpillar to solve the general case (?)

L+R L'+R

R
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Family 1: caterpillar to solve the general case (?)

a-2R 2R'+1
‘\_/.v'
a+1-2R <a > <b >
a+1-R \R R’
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Family 1: caterpillar to solve the general case (?)

a-2R 2R'+1
‘\_/'v'
a+1-2R <a > <b >
a+1-R \R R’

If H is cat(k, ..., Ka, ..., Katbt1), such that ki, ..., ks are even, kai1, ...,
Ka+b+1 are odd, a is odd, and b > 1, then H has

b 4R'+4 a b .
ZR’:Om ( a—2R'—1 ) ( R’ P-positions.
2

Z
UFRJ

22 /69



General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?
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General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

a, b a; b;

A caterpillar cat (a1, by; a2, bo; ...; aj, bj) as in the Figure above has at least

i b 4R/ +4 aj b; PN ..
i ER{:O RT3 a’._zle{_l R P-positions, where R; is the

number of edges oriented to the right among the b; edges in the spine.
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General case of caterpillar: a lower bound

How to use the previous caterpillar to solve the general case?

a, b a; b;

A caterpillar cat (a1, by; a2, bo; ...; aj, bj) as in the Figure above has at least

i b 4R/ +4 aj b; PN ..
i ER{:O RT3 a’._zle{_l R P-positions, where R; is the

number of edges oriented to the right among the b; edges in the spine.

This lower bound is tight.
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Family 2: caterpillar without a leg
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Family 2: caterpillar without a leg

Let H be a caterpillar cat(ka, ..., ks), such that k; is even and
Kiy ...y ki—1, kit1,..., ks are odd, for i =1, ..., s. The number of P-positions

oins(l
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Family 2: caterpillar without a leg

Let H be a caterpillar cat(ka, ..., ks), such that k; is even and
Kiy ...y ki—1, kit1,..., ks are odd, for i =1, ..., s. The number of P-positions

oins(l

Proof by induction in s. ,
Ceores
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Family 3: caterpillar with just one leg
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Family 3: caterpillar with just one leg

If H is cat(ky, ..., Kat1, ..y Kaxps1), Such that only kay1 is odd, a, b > 1
and a+ b+ 1 is even, then H has

Zb —2b44R'4242(—1)° a _bi2r'41 [ b
R'=[8] a—br2R+2+(-1)p | atb-2R'—(-1)® R/+1 R’
2

P-positions.
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Comparing the number of P-positions

Caterpillar  Number of P-positions

Ps; s odd = 55;3
Family 1 ~ s

. ~ —1
Family 2 = (I.sisl)!
Famlly 3 > W

Table: Comparing the number of P-positions
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Comparison between the number of P-positions of a

caterpillar of Family 2 and a path

The graph below shows in the highlighted region for which values of s and
i the caterpillar of Family 2 has more P-positions than the path Psyq,

when s is even (a), and more P-positions than the path Psy», when s is
odd (b).
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Comparison between the number of P-positions of a

caterpillar of Family 2 and a path

The graph below shows in the highlighted region for which values of s and
i the caterpillar of Family 2 has more P-positions than the path Psyq,

when s is even (a), and more P-positions than the path Psy», when s is
odd (b).
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Conclusion: Timber Game

It is a very difficult and surprising counting problem.
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It is a very difficult and surprising counting problem.

It is a reduction problem.
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Conclusion: Timber Game

It is a very difficult and surprising counting problem.
It is a reduction problem.

We are able to determine the number of P-positions for infinite families of
caterpillars.
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Presentations, publications and submissions

[§ Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game
with Caterpillars. Matematica Contemporanea 44 (2015), 1-9.

[§ Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game
with Caterpillars. In proceedings of the 13th Cologne-Twente
Workshop on Graphs & Combinatorial Optimization, Istambul (2015).

[§ Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Timber Game as
a counting problem. Discrete Applied Mathematics special issue of GO
X (2017).
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Coloring Game
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What is Coloring Game?

@ The coloring game is a two player SCIENTIFIC

non-cooperative game conceived by I
Steven Brams. AMERICAN

$2.00
Hpeil 1981
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What is Coloring Game?

@ The coloring game is a two player SCIENTIFIC

non-cooperative game conceived by I
Steven Brams. AMERICAN

o Firstly published in 1981 by Martin
Gardner.

$2.00
Aprit 1981
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What is Coloring Game?

@ The coloring game is a two player
non-cooperative game conceived by
Steven Brams.

SCIENTIFIC
AMERICAN

o Firstly published in 1981 by Martin
Gardner.

@ Reinvented in 1991 by Bodlaender, who
studied the game in the context of
graphs.

$2.00
Aprit 1981

')gCOPPE
UFRJ

31/69



How to play?

@ Given t colors, Alice and Bob take turns properly coloring an
uncolored vertex.
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How to play?

@ Given t colors, Alice and Bob take turns properly coloring an
uncolored vertex.

@ Alice: minimizer.
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How to play?

@ Given t colors, Alice and Bob take turns properly coloring an
uncolored vertex.

@ Alice: minimizer.

@ Bob: maximizer.
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How to play?

O—0O—"—C0O—=0
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How to play?

O—O—"—C0O—=~0
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How to play?

O—O0—"—C0O—@
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@ Alice wins when the graph is completely colored with t colors;
otherwise, Bob wins.
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@ Alice wins when the graph is completely colored with t colors;
otherwise, Bob wins.

@ The game chromatic number Xxz(G) of G is the smallest number t of
colors that ensures that Alice wins (when Alice starts the game).
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Simple results

o x(G) < xg(6) < A(G) +1
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Simple results

o X(6) < xg(6) < A(G) +1
o Xg(Kyn)=n
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Simple results

° X(G) (G)<A(G)+1

Xe
Xg(Kn)
Xe(Sn)
® xg(P1) =1, xg(P2) = xg(P3) =2

@ For n > 4, we have that xz(P,) =3
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Simple results

° X(G) (G)<A(G)+1

Xe
Xg(Kn)
Xe(Sn)
® xg(P1) =1, xg(P2) = xg(P3) =2

@ For n > 4, we have that xg(P,) =3

° Xg(Cn) =3
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Simple results

o X(G) < x&(6) < A(G) +1
o xg(Kn)=n
o Xg(Sh) =1

Xg(P1) =1, xg(P2) = xg(P3) =2

@ For n > 4, we have that xg(P,) =3

° xg(Ch)=3

The stars K1, with p > 1 are the only connected graphs satisfying
Xg(G) =2
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Different graph classes studied

planar graphs: 7 < xg(P) < 17;

outerplanar graphs: 6 < xg(0) < 7;

toroidal grids: x4(TG) = 5;

partial k-trees: xg(P) < 3k +2;

the cartesian products of some classes of graphs: for example,
Xg(T;[D T2) S 12;
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Literature for trees

e Bodlaender (1991): xg(T) <5.
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Literature for trees

e Bodlaender (1991): xg(T) <5.

o Faigle et al. (1993): x,(F) < 4.

gCOPPE
UFRJ

37/69



Literature for trees

e Bodlaender (1991): xg(T) <5.
o Faigle et al. (1993): x,(F) < 4.

@ Dunn et al.(2015): criteria for determining xz(F), for a forest
without vertex of degree 3, in polynomial time.
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Our problem

@ Due to the difficulty concerning this subject, the problem of
characterizing forests with xg(F) = 3 remains open.
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Our problem

@ Due to the difficulty concerning this subject, the problem of
characterizing forests with xg(F) = 3 remains open.

@ In our work, we contribute to this study by analyzing the caterpillar.
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Why caterpillars again?

e Example presented in Bodlaender (1991) to prove the existence of a
tree Hy with xg(Hq) > 4:
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Why caterpillars again?

e Example presented in Bodlaender (1991) to prove the existence of a
tree Hy with xg(Hq) > 4:

CANLNA

@ Dunn et al.(2015) proved that this caterpillar is the smallest tree such
that x,(T) = 4.
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Why caterpillars again?

e Example presented in Bodlaender (1991) to prove the existence of a
tree Hy with xg(Hq) > 4:

CANLNA

@ Dunn et al.(2015) proved that this caterpillar is the smallest tree such
that x,(T) = 4.

e We are interested in characterizing when yz(H) is 3 or 4.
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Our new parameters

@ The game chromatic number is:

o Xx3(G) (or simply xg(G)): when Alice starts the game;
o x2(G): when Bob starts the game!

o xg(G,Z): when Alice starts the game in the partially colored graph G,
for Z a set of vertices of V(G) such that for all v € Z, ¢(v) # 0.
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Sufficient conditions for x,(H) = 4 for any caterpillar H

If a caterpillar H has an induced subcaterpillar H', such that
Xg(H') = xg(H') = 4, then x3(H) = x2(H) = 4.
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Sufficient conditions for x,(H) = 4 for any caterpillar H

If a caterpillar H has an induced subcaterpillar H', such that
Xg(H') = xg(H') = 4, then x3(H) = x2(H) = 4.

DDy
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Sufficient conditions for x,(H) = 4 for any caterpillar H

If a caterpillar H has an induced subcaterpillar H', such that
Xg(H') = xg(H') = 4, then x3(H) = x2(H) = 4.

If a caterpillar H has two induced subcaterpillars H' and H”, such that
Xg(H’) = Xg(H”) =4, then X;(H) = Xg(H) = 4.
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Sufficient conditions for x,(H) = 4 for any caterpillar H

If a caterpillar H has an induced subcaterpillar H', such that
Xg(H') = xg(H') = 4, then x3(H) = x2(H) = 4.

If a caterpillar H has two induced subcaterpillars H' and H”, such that
Xg(H’) = Xg(H”) =4, then X;(H) = Xg(H) = 4.

4
EDIED)» -
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Necessary conditions for x,(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has xz(H) = 4, then H has at least four vertices of
degree at least 4.

Theorem

| \

If H is a minimal caterpillar with respect to xz(H) = 4, then H does not
have consecutive vertices of degree 2, unless H has two edge disjoint
induced subcaterpillars H' and H" that are minimal with respect to
Xg(H') =4 and x2(H") = 4.

A
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If a caterpillar H has xz(H) = 4, then H has at least four vertices of
degree at least 4.

Theorem

| \

If H is a minimal caterpillar with respect to xz(H) = 4, then H does not
have consecutive vertices of degree 2, unless H has two edge disjoint
induced subcaterpillars H' and H" that are minimal with respect to
Xg(H') =4 and x2(H") = 4.

A

High degree vertices (degree of at least 4) are important to have
xg(H) = 4.
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Necessary conditions for x,(H) = 4 for any caterpillar H

Theorem

If a caterpillar H has xz(H) = 4, then H has at least four vertices of
degree at least 4.

Theorem

| \

If H is a minimal caterpillar with respect to xz(H) = 4, then H does not
have consecutive vertices of degree 2, unless H has two edge disjoint
induced subcaterpillars H' and H" that are minimal with respect to
Xg(H') =4 and x2(H") = 4.

A

High degree vertices (degree of at least 4) are important to have
xg(H) = 4.

Low degree vertices (degree 2) are important to have x,(H) < 3. Ecoree
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Four infinite families

o Caterpillars
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e with maximum degree 3;
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o Caterpillars

e with maximum degree 3;
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Four infinite families

o Caterpillars

e with maximum degree 3;
e without vertex of degree 2;
e without vertex of degree 3;

e with vertices of degree 1, 2, 3 and 4.
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Caterpillar with maximum degree 3

Theorem (H with A(H) = 3)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), Xg(H) < 3. Moreover, let F be the forest where each
connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.
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Caterpillar with maximum degree 3

Theorem (H with A(H) = 3)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), Xg(H) < 3. Moreover, let F be the forest where each
connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.

We use 3 claims to prove the theorem and the proof of each one follows by
induction.
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Caterpillar with maximum degree 3

Theorem (H with A(H) = 3)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), XZ(H) < 3. Moreover, let F be the forest where each
connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.

We use 3 claims to prove the theorem and the proof of each one follows by

induction.
Claim 1) If Z = {w1, vs}, then x3(H, Z), xg(H, Z) < 3, except for the
caterpillars with s odd, which has x2(H, Z) < 4.
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Caterpillar with maximum degree 3

Theorem (H with A(H) = 3)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), XZ(H) < 3. Moreover, let F be the forest where each
connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.

We use 3 claims to prove the theorem and the proof of each one follows by
induction.

Claim 1) If Z = {w1, vs}, then x3(H, Z), xg(H, Z) < 3, except for the
caterpillars with s odd, which has x2(H, Z) < 4.

Claim 2) If Z = {w1}, then x3(H,Z), x2(H,Z) <3.
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Caterpillar with maximum degree 3

Theorem (H with A(H) = 3)

Let H be the caterpillar cat(ki, ..., ks) with A(H) = 3. We have that H
has xg(H), XZ(H) < 3. Moreover, let F be the forest where each

connected component is a caterpillar and A(F) = 3. We have that F has
xg(F) <3.

We use 3 claims to prove the theorem and the proof of each one follows by
induction.

Claim 1) If Z = {w1, vs}, then x3(H, Z), xg(H, Z) < 3, except for the
caterpillars with s odd, which has x2(H, Z) < 4.

Claim 2) If Z = {w1}, then x3(H,Z), x2(H,Z) <3.

Claim 3) We have that xz(H), Xg(H) <3.
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Two claws

Color 1 Color 2 Color 1 Color 1 or 2

w
w

Color 1 Color 1 Color 1 Color 2
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Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one
vertex of degree 4. We have that Xg(H, Z) = 4, where

Z ={w,vs| c(v1) # c(vs)}.
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Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one
vertex of degree 4. We have that Xg(H, Z) = 4, where

Z ={w,vs| c(v1) # c(vs)}.
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Lemma (one vertex of degree at last 4)

Let H be the caterpillar without vertex of degree 2 and with just one
vertex of degree 4. We have that Xg(H, Z) = 4, where

2 ahttalerralezta
STTITIETERE
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Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that Xg(H, Z) = xg(H,Z) =4, where

Z ={w,vs| c(v1) # c(vs)}.

STTItTeITRn
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Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that XZ(H, Z) = xz(H, Z) = 4, where

Z = {1, vs| c(v1) # c(vs)}-

gCOPPE
UFRJ

48 /69



Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that Xg(H, Z) = xg(H,Z) =4, where

Z ={w,vs| c(v1) # c(vs)}.
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Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that Xg(H, Z) = xg(H,Z) =4, where

Z ={w,vs| c(v1) # c(vs)}.

SII1TIeTIRN
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Lemma (two vertices of degree at least 4)

Let H be the caterpillar without vertex of degree 2 and with exactely two
vertice of degree 4. We have that Xg(H, Z) = xg(H,Z) =4, where

Z ={w,vs| c(v1) # c(vs)}.

STTI3Ter
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Caterpillar without vertex of degree 2

Let H be the caterpillar without vertex of degree 2. We have that
X;(H) = Xg(H) =4 if, and only if, H is caterpillar cat(ki, ..., ks), such
that k1 = ks =0, ki #0, Vi € {2,...,s — 1}, and there are at least four
vertices of degree at least 4.
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Proof of Theorem (H without vertex of degree 2)

= By the necessary condition for xz(H) = 4.

=

P st oes s Sroe st
eittereetsre rrttrebrssder
rrrbrrerteee crrirretiriter
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Caterpillar without vertex of degree 3

Let Family @ be the set of caterpillars Hy, Hss, H[a] U H[B]' H[a][B] and
Hio13(6)-
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Caterpillar without vertex of degree 3

Let Family @ be the set of caterpillars Hy, Hss, H[a] U H[B]' H[a][B] and
Hio13(6)-

(d)

Figure: Caterpillars (a) Hss (b) Hpsj (¢)Hpa (d)Hapspa)-
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Caterpillar without vertex of degree 3

Let Family Q be the set of caterpillars Hy, Hz3, Hj,) U Hg), Hiappe) and
Hiaga(a)

(d)

Figure: Caterpillars (a) Hss (b) Hpsj (¢)Hpa (d)Hapspa)-

A caterpillar H without vertex of degree 3 has xg(H) = 4 if, and only if, H
has a caterpillar of Family Q as an induced subcaterpillar.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q' be the set of caterpillars {H[’a] U H[IB]’ H[’a] U Hs, H3 U Hs,
H}, and H[’a][ﬁ,]7 Hjs}.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q' be the set of caterpillars {H[’a] U H[IB]’ H[’a] U Hs, H3 U Hs,

H}, and H[’a][ﬁ,]7 Hjs}.

Figure: Caterpillars (a) Hpg (b) H3 (c)Hz, (d)Hig)s) (e)Hzs.
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Caterpillar with vertices of degree 1, 2, 3 and 4

Let Family Q' be the set of caterpillars {H[’a] U H[IB]’ H[’a] U Hs, H3 U Hs,

H}, and H[’a][ﬁ,]7 Hjs}.

Figure: Caterpillars (a) Hpg (b) H3 (c)Hz, (d)Hig)s) (e)Hzs.

Let H be a caterpillar with vertices of 1, 2, 3 and 4. If H has a caterpillar
of Family Q" as a induced subcaterpillar, then xz(H) = 4.
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A(G Xg(G) =1 Xg(G) =2 Xg(G) =3 Xg(G) =4
0 P - - -
1 - P - -
2 - P3 P,,, n Z 4 -
3 - star not a star -
4 - star see next Figure see next Figure
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H without vertex of degree 2

H without vertex of degree 3

H with exactly
four vertices
of degree 4 except Hy

Family Q except H,

Family Q'

Figure: Caterpillars with A(H) =4 and x,(H) = 4.
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Xg(F)

Theorem

Let F be a forest composed by r trees T1, ..., T,. Assume that

Xg(T1) < xz(T2) < ... < xg(T:), and, if there exist two trees with the

same game chromatic number, then T; and T; are ordered in a way that

Xg(T,-) < Xg(T-), for i < j. We have that:

Q@ IFxg(Tr) > x3(Tr): xg(Tr—1), then xg(F) = x3(T;);

If X2(Tr) = X2(Tr—1) > x3(T,), then xg(F) = x2(T,);

Ifx3(T,) = xg(T;), then Xg(F) = x3(Tr) = xg(T):
(Tr)

)

Ifxg T.) <x3(T,) and 3 1= |V( Ti)| is even, then xg(F) = xg(Tr);
Ifxg(T < xg(T;) and Zi:l |V(T;)| is odd, then xg(F) =
max {xg(F\T:),xg(T:)}.

© 6 00
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Conclusion: Coloring Game

It is a reduction problem.
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Conclusion: Coloring Game

It is a reduction problem.

We are able to characterize evil, indifferent and good subgraphs for Alice
to win the game with 3 colors in caterpillars.
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Presentations and submissions

[§ Furtado, A., Dantas, S., Figueiredo, C., Gravier, S., Schimidt, S., The
Game Chromatic Number of Caterpillars. In proceedings of the XVIII
Latin-Iberoamerican Conference on Operations Research, Santiago
(2016).
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Nordhaus-Gaddum type
inequalities



What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:
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What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2,/n < x(G) + x(G) < n+ 1. These
bounds are best possible for infinitely many values of n.
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What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2,/n < x(G) + x(G) < n+ 1. These
bounds are best possible for infinitely many values of n.

@ Survey by Aouiche and Hansen (2013): 360 articles.
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What are Nordhaus-Gaddum type inequalities?

@ Nordhaus and Gaddum (1956) showed lower and upper bounds on the
sum of the chromatic number of a graph and its complement:

Theorem (Nordhaus and Gaddum, 1956)

If G is a graph of order n, then 2,/n < x(G) + x(G) < n+ 1. These
bounds are best possible for infinitely many values of n.

@ Survey by Aouiche and Hansen (2013): 360 articles.
@ To the best of our knowledge, the only Nordhaus-Gaddum type

inequality existing for invariants related to games on graphs is by Alon
et al.(2002) and concerns the game domination number.
Eeoree
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Nordhaus-Gaddum type inequalities to xz(G) + x4 (G):
Theorem 4.4

Theorem

Nordhaus and Gaddum For any graph G of order n, we have that
2y/n < xg(G) + xg(G) < [32]. Moreover, the bounds are best possible
asymptotically:

© for infinitely many values of n, there are graphs G of order n with

Xe(6)+%:(8) = | 3| - 1

@ for infinitely many values of n, there are graphs G of order n with

Xg(G) + xg(G) = 2v2n — 1.
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Nordhaus-Gaddum type inequalities to xz(G) + x4 (G):
Theorem 4.4

Theorem

Nordhaus and Gaddum For any graph G of order n, we have that
2y/n < xg(G) + xg(G) < [32]. Moreover, the bounds are best possible
asymptotically:

© for infinitely many values of n, there are graphs G of order n with
4n
Xe(6)+%:(8) = | 3| - 1
@ for infinitely many values of n, there are graphs G of order n with

Xg(G) + xg(G) = 2v2n — 1.

The lower bound follows from Theorem of Nordhaus and Gaddum (1965)
and the inequality x(G) < xg(G).
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Proof for the upper bound x,(G) + Xg(a) < {%1

Case 1) n is even.
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Proof for the upper bound x.(G) + Xg(g) < (%W

Case 1) n is even.

G G
degree<n/2 — > A(G) AG)
degree=n/2 — > B(G) B(G)

C(G) C(G)

degree>n/2 —— >
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Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) n is even.

G G
degree<n/2 — > A(G) AG)
degree=n/2 — > ( B(G) ( B(G)

C(G) C(G)

degree>n/2 —— >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

all colored. Assume that 5 colors are used.
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Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) n is even.

G G
degree <n/2 — > A(G) A(G)
degree=n/2 — > B(G) ( B(G)

ca) (G

degree>n/2 —— >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

n
all colored. Assume that — colors are used.

Case 1.1) b+ c < [ﬂ
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Case 1) nis even.

G G
degree<n/2 — > A(G) A(G)
degree=n/2 — > B(G) B(G)
C(G) C(G)

degree>n/2 —— >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are
all colored. Assume that g colors are used.

Case 1.1) b+ c < [g—‘

Just vertices in A(G) can be not colored and they do not need any
. n

different color, and x,(G) < >

gCOPPE
UFRJ

60 /69



Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) n is even.

G G
degree<n/2 — > A(G) A(G)
degree=n/2 — > B(G) B(G)
c(G) C(G)

degree>n/2 — >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

n
all colored. Assume that — colors are used.

Case 1.1) b+ c < [ﬂ
As xg(G) < n, then xz(G) + xz(G) < %
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Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) n is even.

G G
degree<n/2 — > A(G) A(G)
degree=n/2 — > B(G) B(G)
c(G) C(G)

degree>n/2 — >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

all colored. Assume that n colors are used.
Case 1.2) a < HW As in case 1.1, x,(G) < g and x.(G) < n. So,
Xg(G) + xg(G) < %
Ceores
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Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) nis even.

G G
degree<n/2 — > A(G) A(G)
degree=n/2 — > ( B(G) ( B(G)
C(G) C(G)

degree>n/2 —— >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are
n
all colored. Assume that — colors are used.

Case 1.3) a > {g-‘ and b+ c > [g—‘ There are at most b+ ¢ — {21
uncolored vertices in B(G) U C(G). If there are uncolored vertices in

A(G), they do not need any different color.
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Proof for the upper

Case 1) nis even.

G G
degree<n/2 — A(G) A(G)
degree=n/2 — > B(G) B(G)
() (@)

degree >n/2 — >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

n
all colored. Assume that 5 colors are used.

Case 1.3) a > HW and b+ c¢c > [ﬂ There are at most b+ ¢ — HW
uncolored vertices in B(G) U C(G). If there are uncolored vertices in
A(G), they do not need any different color.

S0, xg(6) < 5 +b+c— |7
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Proof for the upper

Case 1) nis even.

G G
degree<n/2 — A(G) A(G)
degree=n/2 — > B(G) B(G)
() (@)

degree >n/2 — >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

n
all colored. Assume that 5 colors are used.

Case 1.3) a > EW and b+ c¢c > [ﬂ There are at most b+ ¢ — HW

uncolored vertices in B(G) U C(G). If there are uncolored vertices in
A(G), they do not need any different color.

Using exactly the same idea in G, x(G) < g +a-— {21
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Proof for the upper

Case 1) nis even.

G G
degree<n/2 — A(G) A(G)
degree=n/2 — > B(G) B(G)
() (@)

degree >n/2 — >

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are

n
all colored. Assume that 5 colors are used.

Case 1.3) a > EW and b+ c¢c > [ﬂ There are at most b+ ¢ — HW

uncolored vertices in B(G) U C(G). If there are uncolored vertices in
A(G), they do not need any different color.

Xe(6) +xg(€) S 5 +btc— | 7| +5+a—|7] 337". -
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Proof for the upper bound x.(G) + x'g(g) < (%W

Case 1) n is even.

G G
degree<n/2 — > A(G) AG)
degree=n/2 — > ( B(G) ( B(G)
degree>n/2 <@ <)

In G, Alice begins by coloring only in B(G) U C(G) until those vertices are
all colored. Assume that n colors are used.

Case 2) nis odd is similar and x4(G) + x¢(G) < F;-‘ _
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [?n-‘ -1
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [?n-‘ -1

Alice colors first in the clique.
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Construction of family 1 of the Theorem 4.4
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and n > 5. We have that xz(G) + x¢(G/) = [?n-‘ —1.
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gCOPPE
UFRJ

61/69



Construction of family 1 of the Theorem 4.4
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5-‘ %1 mod 3
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. [4
and n > 5. We have that xz(G) + x¢(G/) = [?n-‘ —1.
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

. [4
and n > 5. We have that xz(G) + x¢(G/) = [?n-‘ —1.

Alice colors first in the clique.
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

. [4
and n > 5. We have that xz(G) + x¢(G/) = [?n-‘ —1.

Alice colors first in the clique.
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [_n-‘ —1.

3

/
When Alice finishes to color the vertices of the clique, she has played [2—‘

times, and Bob [ﬂ — 1 times.
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [_n-‘ —1.

3

/
When Alice finishes to color the vertices of the clique, she has played [2—‘

times, and Bob [ﬂ — 1 times.

(@) =2|5] -1
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [_n-‘ —1.

3

/
When Alice finishes to color the vertices of the clique, she has played [2—‘

times, and Bob [g — 1 times.

(@) =2|5] -1

G, is composed by a clique K; and a stable set S[ﬂ = xg(G) = 1.
%COPPE
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Construction of family 1 of the Theorem 4.4

/
Let G; be the graph join S; ® KP]' with order n = | + [5—‘ %1 mod 3
2

— 4
and n > 5. We have that x4(Gj) + xz(G/) = [_n-‘ —1.

3

/
When Alice finishes to color the vertices of the clique, she has played [2—‘

times, and Bob [g — 1 times.

(@) =2|5] -1

G, is composed by a clique K; and a stable set S[ﬂ = xg(G) = 1.

Xg(Gl)+Xg(GI):2’V2-‘ +I*1 gco%%g
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Family 2 of the Theorem 4.4

Lemma

Let G be a complete \/g—partite graph, such that \/g is an even integer

n ... . .
and each 5 disjoint set of vertices has exactly \/2n vertices. We have

that xg(G) + xg(G) = 2v2n — 1.
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to

e the number of P-positions of a caterpillar (Timber Game);
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to

e the number of P-positions of a caterpillar (Timber Game);
o the game coloring number of any graph G (Marking Game).
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Nordhaus-Gaddum type inequalities to other games

@ We determine the Nordhaus-Gaddum type inequalities to

e the number of P-positions of a caterpillar (Timber Game);
o the game coloring number of any graph G (Marking Game).

@ Marking Game is “colorblind” version of the coloring game.

@ All bounds are tight, except the upper bound for the number of
P-positions of a caterpillar.
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Submission

[3 Charpentier, C., Furtado, A., Dantas, S., Figueiredo, C., Gravier, On
Nordhaus-Gaddum type inequalities for the Game Chromatic and
Game Coloring numbers. Submitted to Discrete Maths. (2018)
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Current and Future work: Timber Game

2(s — 1 —
The number of P-positions of family 1 is: de—atl) ( s—1 )

a—1 (a—3)/2

@ Is there a simpler formula for the number of P-positions of family 3
without the use of summation?
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Current and Future work: Timber Game

2(s — 1 —
The number of P-positions of family 1 is: de—atl) ( s—1 )

(a—3)/2

a—1

@ Is there a simpler formula for the number of P-positions of family 3
without the use of summation?

e Given any caterpillar, is there a polynomial algorithm to determine its
number of P-positions?
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Current and Future work: Coloring Game

The caterpillar H[/ o] is the unique caterpillar with vertices of degree 1, 2, 3
and 4 satisfying X;(Hfa]) = 3 and that is minimal with respect to
Xg(H[’a]) =4. v (LAWCG 2018)
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Xg(H[’a]) =4. v (LAWCG 2018)
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Current and Future work: Coloring Game

The caterpillar H[/a] is the unique caterpillar with vertices of degree 1, 2, 3

and 4 satisfying XZ(H[/a]) = 3 and that is minimal with respect to
Xg(Hj,) =4. v (LAWCG 2018)

If H is a caterpillar with vertices of degree 1, 2, 3 and 4, and is minimal
with respect to xg(H) = 4, then H is a caterpillar of Family Q'

X3(T) < xg(T), for a tree T, except for T = Pj.
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Current and Future work: Nordhauss-Gaddum

@ Is it possible to improve the upper bound for the number of
P-positions in a caterpillar so that the bound is tight?
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Current and Future work: Nordhauss-Gaddum

@ Is it possible to improve the upper bound for the number of
P-positions in a caterpillar so that the bound is tight?

@ Is it possible to find extremal graphs for the lower and upper bounds
for the number of P-positions in a caterpillar, the game chromatic
and coloring numbers in any graph?
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Current and Future work in general

@ Apply the games in high school, college classes and events of the
popularization of mathematics.
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THANK YOU!
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