Introduction to game coloring

Sylvain Gravier

CNRS – Institut Fourier

Maths à Modeler – Université Grenoble Alpes

Game coloring ...

Choose a set of colors

Take your favorite graph

Graph coloring ...

 $\chi(G)$ Minimum number of colors needed to color G.

Play Game coloring ...

Alice versus Bob

Alice

Bob wins

Brams via Gardner 1981

Play Game coloring ...

Alice versus Bob

Alice

Alice wins!!

Brams via Gardner 1981

Game coloring analysis...

Depend who start ...

So fixe that Alice starts

Alice, the Gentel and Bob, the Rascal

With enough colors Alice wins

n

How many colors for insuring the Alice's victory?

The game chromatic number $\chi_q(G)$

Game Coloring versus Coloring

Clearly,
$$\chi(G) \le \chi_g(G)$$
 !!

Ok, but does there exist a constant
$$C$$
 such that $\chi(G) \ge \chi_g(G) + C$?

$$\chi(G) \ge \chi_g(G) + C$$
?

Try with $\chi(G) = 2$

Hint ...

Game Coloring versus Coloring

Clearly,
$$\chi(G) \leq \chi_g(G)$$
 !!

Ok, but does there exist a constant C such that $\chi(G) \ge \chi_g(C) + C$?

NO!!

Game Coloring on Trees

Start with path ...
$$X_g(P_n) = ??$$

Can we deduce something for cycle ...
$$X_g(C_n) = ??$$

Game Coloring on Trees

Paths too easy !!

OK try some caterpillars ...

Game Coloring on Caterpillars

means brittle vertex ...

Game Coloring on Caterpillars

Game Coloring on Caterpillars

Conclude by induction ...

Game Coloring on Trees

Caterpillars too easy !!

Thanks to Simone et al. there is Caterpillar C such that $X_q(C) > 3$

¹ Ana Furtado · Simone Dantas · Celina M. H. de Figueiredo · Sylvain Gravier · Simon Schmidt – 2016.

Game coloring known stuff...

Trees are 4 game-colorable...

Faigle, Kierstead, Kern and Trotter 1993

Constant bounded for planar graphs

e.g. Zhu 2008, for fixed genus

Monotone or not ???

PSPACE-complete (for 3)

Boedlander 1991

With enough colors Alice wins

$$\chi(G)+\frac{n}{2}$$

Nordhauss-Gaddum inequalities $\chi_g(G)$

Charpentier, Furtado and Gravier 2016

Game coloring known stuff...

Not hereditary ...

Bob wins when Alice Asitarts in swhen Alice starts i.e. $\chi_g(G) \le 3$ i.e. $\chi_g(G) > 3$