Genome Matrices and The Median Problem

Joao Meidanis¹

University of Campinas, Brazil

December 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

¹Supported by FAPESP

Summary

Genomes and Matrices

- 2 Rank Distance and the Median Problem
- 3 Approximation Algorithm
- Orthogonal Algorithm
- 5 M_I Algorithm

- Zanetti, J.P.P., Biller, P., Meidanis, J.
 Median approximations for genomes modeled as matrices.
 Bull Math Biol (2016) 78: 786.
- Chindelevitch, L., Meidanis, J.
 On the Rank-Distance Median of 3 Permutations.
 RECOMB-CG Workshop (2017) LNCS 10562: 256.
 Extended version submitted to BMC Bioinformatics.
- Chindelevitch, L., Meidanis, J.

An exact polynomial-time algorithm for the rank median of three genomes.

Submitted to RECOMB 2018.

The Human Genome

Source: National Center for Biotechnology Information (NCBI), USA

A Bacterial Genome: E. coli

Source: Science, 05 Sep 1997: Vol. 277, Issue 5331, pp. 1453-1462

Meidanis (Unicamp)

Genome Matrices and The Median Problem

December 2017 5 / 26

Genome elements

• Adjacencies: $\{a_h, b_h\}, \{b_t, c_t\}$; telomeres: a_t, c_h

Meidanis (Unicamp)

• Adjacencies: $\{a_h, b_h\}, \{b_t, c_t\}$; telomeres: a_t, c_h

$$\begin{array}{c} a_t \\ a_h \\ b_t \\ b_h \\ c_t \\ c_h \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Properties

- 0-1 matrices, satisfy $A = A^t = A^{-1}$
- even dimension

• Distance between two genome matrices is the rank of their difference

$$d(A,B)=r(A-B)$$

Properties

•
$$r(A+B) \leq r(A) + r(B)$$

- Hence, $d(A, C) \leq d(A, B) + d(B, C)$
- d(A, B) = 0 if and only if A = B
- d(A,B) = d(B,A)

Biological Relevance and Double Cut-and-Join (DCJ)

DCJ vs Rank Distance in Random Genomes

$Rank = 2 \times Algebraic$

Source: IEEE/ACM Trans Comput Biol Bioinform, 2013 10(4):819-31.

Meidanis (Unicamp)

Matrix Median Problem

Useful for ancestor reconstruction

Definition

Given three input genome matrices A, B, and C, find matrix M minimizing d(M, A) + d(M, B) + d(M, C).

• Polynomial? NP-hard? Nobody knows.

Meidanis (Unicamp)

Median may not be genomic

Need a way to go back from matrices to genomes

Lower Bound

$$d(M,A)+d(M,B)+d(M,C)\geq \frac{d(B,A)+d(C,B)+d(A,C)}{2}.$$

• If *M* reaches lower bound,

$$d(X,M)+d(M,Y)=d(X,Y),$$

$$M = SX + (I - S)Y,$$

for all $X, Y \in \{A, B, C\}$, and $X \neq Y$

Division into subspaces

Meidanis (Unicamp)

Genome Matrices and The Median Problem

December 2017 14 / 26

3

Subspaces	V_1	V_2	V_3	V_4	V_5
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Orthonormal Bases	B_1	B_2	B_3	B_4	B_5
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Projection Matrices	P_1	P_2	P_3	P_4	P_5
	1	Ţ	\downarrow	Ţ	Ż
	$M_A = AP_1 +$	$AP_{2} +$	BP ₃ -	- AP ₄	$+AP_5$
Median Candidates	$M_B = BP_1 +$	$BP_2 +$	<i>BP</i> ₃ -	$\vdash AP_4$	$+ BP_5$
	$M_C = CP_1 +$	$BP_2 +$	<i>CP</i> ₃ -	$\vdash CP_4$	$+ CP_5$

- $\frac{4}{3}$ approximation factor for genome matrices
- if $V_5 = \{0\}$ then each candidate is a median (reaches lower bound)

Orthogonal matrices

- Tests with small matrices suggested looking at orthogonal matrices
- Exact, polynomial-time algorithm

- "Walk towards the median"
- Find rank 1 matrix H such that B + H is closer to both A and C
- Always possible!

Algorithm

while
$$d(A, B) + d(B, C) > d(A, C)$$
 do
Find non-zero $u \in im(A - B) \cap im(C - B)$
 $B \leftarrow B - 2uu^T B/u^T u$
end
return B

- Nondeterministic
- Does it reach all medians?

Software

- GNU Octave 3.8.1
- Chooses matrix closer to median to "walk"
- Computes $im(A B) \cap im(C B)$ as:

V = null([(null(A'-B'))'; (null(C'-B'))'])

where X' is X^{T} , the transpose of X

- Tries all columns of V
- Also code in R, python

Hardware

- Laptop, 8 GB memory, 4 cores, AMD A8-7410
- Windows 10 + WSL

Simulation

- Start with random genome
- Apply random rearrangement operations
- Repeat to get A, B, C

Parameters

- sizes: 12, 16, 20, 30, 50, 100, 200, 300, 500 extremities
- type of operation: Add/remove adjacencies (near) or DCJ (far)
- number of operations: 5% to 30%
- 10 \times each
- 1,080 instances

Results

Near

• For all instances, the algorithm finds a median

Far

- For all but 5, the algorihtm finds a median
- Five instances do not converge: sizes 16, 20, and 30
- Not the biggest sizes!!

Times to run all instances of a given size

size	Near	Far		
500	27 min	7:30 h		
300	4 min	0:50 h		
200	2 min	0:13 h		
100	1 min	0:01 h		

Drawbacks of Orthogonal Algorithm

- Lack of convergence
- Not fast enough

Insights from Orthogonal Algorithm

- Medians reach the lower bound
- For any median *M*:

$$Xv = Yv \implies Mv = Xv = Yv,$$

for $X, Y \in \{A, B, C\}$ and $X \neq Y$

- M_1 follows majority in V_1 through V_4
- M_I follows I in V_5

э

Technical Improvements

- B_5 not needed
- B_i don't need to be orthonormal, i = 1..4
- B_i's computed from permutation vectors and DFS
- B_i's all binary
- Improved formula

$$M_{I} = I + ([AB_{1}, AB_{2}, BB_{3}, AB_{4}] - B_{14})(B_{14}^{T}B_{14})^{-1}B_{14}^{T}$$

where B_i is a basis of V_i for i = 1..4 and

$$B_{14} = [B_1, B_2, B_3, B_4]$$

Results

Near

- For all 540 cases, the algorithm finds a median
- Median is genomic in 535 cases

Far

- For all 540 cases, the algorihtm finds a median
- Median is genomic in 254 cases

Times to run all instances of a given size

size	o-Near	o-Far	mi-Near	mi-Far
500	27 min	7:30 h	9:52 min	8:24 min
300	4 min	0:50 h	3:26 min	2:34 min
200	2 min	0:13 h	1:40 min	1:08 min
100	1 min	0:01 h	0:30 min	0:24 min

From matrices back to genomes

- Assign weight $|a_{ij}| + |a_{ji}|$ to edge ij
- Take a maximum weight matching as your solution
- A genome is a matching of gene extremities

Future work

- Get genomes from medians
- Tests with mammals, bacteria, plants, etc.
- Try minimax matrices

minimize $\max\{d(A, M), d(B, M), d(C, M)\}$

- Determine all sorting scenarios (done for DCJ)
- Extension for gene deletions and insertions (done for DCJ)
- Extension for duplicated genes (done for DCJ)
- Technical issues: NP-hardness, convergence, etc.

Get this presentation:

http://www.ic.unicamp.br/~meidanis/research/rear/