Genome Matrices and The Median Problem

Joao Meidanis ${ }^{1}$
University of Campinas, Brazil

December 2017

Summary

(1) Genomes and Matrices
(2) Rank Distance and the Median Problem
(3) Approximation Algorithm
(4) Orthogonal Algorithm
(5) M_{l} Algorithm
(6) Future work

Relevant papers

- Zanetti, J.P.P., Biller, P., Meidanis, J. Median approximations for genomes modeled as matrices. Bull Math Biol (2016) 78: 786.
- Chindelevitch, L., Meidanis, J.

On the Rank-Distance Median of 3 Permutations. RECOMB-CG Workshop (2017) LNCS 10562: 256.
Extended version submitted to BMC Bioinformatics.

- Chindelevitch, L., Meidanis, J.

An exact polynomial-time algorithm for the rank median of three genomes.
Submitted to RECOMB 2018.

The Human Genome

Source: National Center for Biotechnology Information (NCBI), USA

A Bacterial Genome: E. coli

Source: Science, 05 Sep 1997: Vol. 277, Issue 5331, pp. 1453-1462

Genome elements

- Adjacencies: $\left\{a_{h}, b_{h}\right\},\left\{b_{t}, c_{t}\right\}$; telomeres: a_{t}, c_{h}

Representing genomes as matrices

- Adjacencies: $\left\{a_{h}, b_{h}\right\},\left\{b_{t}, c_{t}\right\}$; telomeres: a_{t}, c_{h}
a_{t}
a_{h}
b_{t}
b_{h}
c_{t}
$c_{h}$$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Properties

- 0-1 matrices, satisfy $A=A^{t}=A^{-1}$
- even dimension

Rank Distance

- Distance between two genome matrices is the rank of their difference

$$
d(A, B)=r(A-B)
$$

Properties

- $r(A+B) \leq r(A)+r(B)$
- Hence, $d(A, C) \leq d(A, B)+d(B, C)$
- $d(A, B)=0$ if and only if $A=B$
- $d(A, B)=d(B, A)$

Biological Relevance and Double Cut-and-Join (DCJ)

rank 4, $D C J=2$

DCJ vs Rank Distance in Random Genomes

Rank $=2 \times$ Algebraic

Source: IEEE/ACM Trans Comput Biol Bioinform, 2013 10(4):819-31.

Matrix Median Problem

Useful for ancestor reconstruction

Definition

Given three input genome matrices A, B, and C, find matrix M minimizing $d(M, A)+d(M, B)+d(M, C)$.

- Polynomial? NP-hard? Nobody knows.

Median may not be genomic

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

- Need a way to go back from matrices to genomes

Properties of the Median

- Lower Bound

$$
d(M, A)+d(M, B)+d(M, C) \geq \frac{d(B, A)+d(C, B)+d(A, C)}{2}
$$

- If M reaches lower bound,

$$
\begin{gathered}
d(X, M)+d(M, Y)=d(X, Y) \\
M=S X+(I-S) Y
\end{gathered}
$$

for all $X, Y \in\{A, B, C\}$, and $X \neq Y$

Division into subspaces

Approximation Algorithm

Subspaces

Orthonormal Bases

Projection Matrices

Median Candidates

- $\frac{4}{3}$ approximation factor for genome matrices
- if $V_{5}=\{0\}$ then each candidate is a median (reaches lower bound)

Orthogonal matrices

- Tests with small matrices suggested looking at orthogonal matrices
- Exact, polynomial-time algorithm

- "Walk towards the median"
- Find rank 1 matrix H such that $B+H$ is closer to both A and C
- Always possible!

Orthogonal matrices

- Algorithm

$$
\begin{aligned}
& \text { while } d(A, B)+d(B, C)>d(A, C) \text { do } \\
& \quad \text { Find non-zero } u \in \operatorname{im}(A-B) \cap \operatorname{im}(C-B) \\
& \quad B \leftarrow B-2 u u^{T} B / u^{T} u \\
& \text { end } \\
& \text { return } B
\end{aligned}
$$

- Nondeterministic
- Does it reach all medians?

Implementation

Software

- GNU Octave 3.8.1
- Chooses matrix closer to median to "walk"
- Computes $\operatorname{im}(A-B) \cap \operatorname{im}(C-B)$ as:

$$
V=\operatorname{null}\left(\left[\left(\operatorname{null}\left(\mathrm{A}^{\prime}-\mathrm{B}^{\prime}\right)\right)^{\prime} ;\left(\operatorname{null}\left(\mathrm{C}^{\prime}-\mathrm{B}^{\prime}\right)\right)^{\prime}\right]\right)
$$

where X^{\prime} is X^{T}, the transpose of X

- Tries all columns of V
- Also code in R, python

Hardware

- Laptop, 8 GB memory, 4 cores, AMD A8-7410
- Windows 10 + WSL

Data Sets

Simulation

- Start with random genome
- Apply random rearrangement operations
- Repeat to get A, B, C

Parameters

- sizes: $12,16,20,30,50,100,200,300,500$ extremities
- type of operation: Add/remove adjacencies (near) or DCJ (far)
- number of operations: 5% to 30%
- $10 \times$ each
- 1,080 instances

Results

Near

- For all instances, the algorithm finds a median

Far

- For all but 5, the algorihtm finds a median
- Five instances do not converge: sizes 16, 20, and 30
- Not the biggest sizes!!

Times to run all instances of a given size

size	Near	Far
500	27 min	$\mathbf{7 : 3 0} \mathbf{h}$
300	4 min	$0: 50 \mathrm{~h}$
200	2 min	$0: 13 \mathrm{~h}$
100	1 min	$0: 01 \mathrm{~h}$

Alternative approach

Drawbacks of Orthogonal Algorithm

- Lack of convergence
- Not fast enough

Insights from Orthogonal Algorithm

- Medians reach the lower bound
- For any median M :

$$
X v=Y v \quad \Longrightarrow \quad M v=X v=Y v
$$

for $X, Y \in\{A, B, C\}$ and $X \neq Y$

M/ Median

- M_{I} follows majority in V_{1} through V_{4}
- M_{I} follows I in V_{5}

Subspaces

Bases

Projection Matrices

Median

Efficient Computation

Technical Improvements

- B_{5} not needed
- B_{i} don't need to be orthonormal, $i=1$.. 4
- B_{i} 's computed from permutation vectors and DFS
- B_{i} 's all binary
- Improved formula

$$
M_{I}=I+\left(\left[A B_{1}, A B_{2}, B B_{3}, A B_{4}\right]-B_{14}\right)\left(B_{14}^{T} B_{14}\right)^{-1} B_{14}^{T}
$$

where B_{i} is a basis of V_{i} for $i=1 . .4$ and

$$
B_{14}=\left[B_{1}, B_{2}, B_{3}, B_{4}\right]
$$

Results

Near

- For all 540 cases, the algorithm finds a median
- Median is genomic in 535 cases

Far

- For all 540 cases, the algorihtm finds a median
- Median is genomic in 254 cases

Times to run all instances of a given size

size	o-Near	o-Far	mi-Near	mi-Far
500	27 min	$7: 30 \mathrm{~h}$	$9: 52 \mathrm{~min}$	$8: 24 \mathrm{~min}$
300	4 min	$0: 50 \mathrm{~h}$	$3: 26 \mathrm{~min}$	$2: 34 \mathrm{~min}$
200	2 min	$0: 13 \mathrm{~h}$	$1: 40 \mathrm{~min}$	$1: 08 \mathrm{~min}$
100	1 min	$0: 01 \mathrm{~h}$	$0: 30 \mathrm{~min}$	$0: 24 \mathrm{~min}$

From matrices back to genomes

- Assign weight $\left|a_{i j}\right|+\left|a_{j i}\right|$ to edge $i j$
- Take a maximum weight matching as your solution
- A genome is a matching of gene extremities

Future work

- Get genomes from medians
- Tests with mammals, bacteria, plants, etc.
- Try minimax matrices

$$
\operatorname{minimize} \max \{d(A, M), d(B, M), d(C, M)\}
$$

- Determine all sorting scenarios (done for DCJ)
- Extension for gene deletions and insertions (done for DCJ)
- Extension for duplicated genes (done for DCJ)
- Technical issues: NP-hardness, convergence, etc.

Get this presentation:

> http://www.ic.unicamp.br/~meidanis/research/rear/

