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1. Introduction

A cycle passing through all the vertices of a graph is called a Hamiltonian cycle.
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A graph containing a Hamiltonian cycle is called a Hamiltonian graph.

Figure 1: An Hamiltonian graph with an hamiltonian cycle.



Figure 2: A non Hamiltonian graph.



Grafo de Petersen

Figure 3



A graph G is said to be hyper-Hamiltonian when G is Hamiltonian and G — {v}
is also Hamiltonian for any vertex v of G.

Figure 4: An hiper-Hamiltonian graph



Figure 5: A non hiper-Hamiltonian graph
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This notion was introduced in [3] (Gallian et al, 1987) about digraphs.

Regarding the hyper-Hamiltonicity of a graph, only few articles are known, as
[10] (Mai et al, 2008) where hyper-Hamiltonian generalized Petersen graphs are
investigated.

In this work, we present some sufficient conditions to ensure that an arbitrary
graph is hyper-Hamiltonian, in analogy to results on Hamiltonicity.

We hope, this way, be providing the basis for future research on the topic.
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da(u) + dg(v) > n+ 1 for every pair of nonadjacent vertices u and v

then GG is hyper-Hamiltonian.



Our first theorem is an analogous to Ore's theorem for hyper-Hamiltonian graphs.

Theorem 2 Let G be a graph with n > 3 vertices. If
da(u) + dg(v) > n+ 1 for every pair of nonadjacent vertices u and v

then GG is hyper-Hamiltonian.

Sketch of the proof: It is enough to apply Ore's theorem to G' = G — {w},
considering the three possibilities on vertices u, v and w:

¢ G has the edges uw and vw;

¢ the edges uw and vw are not in G,

¢ G has the edge uw but not the edge vw.



As an immediate consequence we also have an analogous to Dirac’s theorem [5]
(1952).

n+1

Corollary 3 Ifo(G) >

degree among vertices of G )

then GG is hyper-Hamiltonian. (5(G) denotes the minimum



For the next result we need to set some notation. Let denote by:
o P, : the graph obtained from the complete graph on n vertices by adding a
pendent vertex;



For the next result we need to set some notation. Let denote by:
o P, : the graph obtained from the complete graph on n vertices by adding a
pendent vertex;

o P, + e the graph obtained from [P, by inserting an edge.



Figure 6: Pg and Ps + ¢




The next theorem is the correspondent for hyper-Hamiltonian to a result for
Hamiltonian graphs which is a consequence of Ore's theorem. [?] (Bondy and
Chvatal, 1976)



The next theorem is the correspondent for hyper-Hamiltonian to a result for
Hamiltonian graphs which is a consequence of Ore's theorem. [?] (Bondy and
Chvatal, 1976)

Theorem 4 Let G be a graph with n > 3 vertices and m edges.

2
-3 4
If m > % then GG is hyper-Hamiltonian or G = P,, | + e.



Theorem 5 Let G be a graph with n > 3 vertices and m edges.

Cp— 6
If m > % then GG is hyper-Hamiltonian unless G = P, | + e.



Definition 6 ([2]) For an integer k > 0, the k-closure of the graph G is a graph
obtained from G by recursively joining pairs of nonadjacent vertices whose degree
sum is at least k until no such pair remains.



Definition 6 ([2]) For an integer k > 0, the k-closure of the graph G is a graph
obtained from G by recursively joining pairs of nonadjacent vertices whose degree
sum is at least k until no such pair remains.

Figure 7: A graph and its 3-closure.



Figure 8: A graph and its 7-closure.



The k-closure of a graph allows to state the following proposition, analogous to
one found in [2].

Proposition. 7 A graph GG on n vertices is hyper-Hamiltonian if, and only if, the
(n + 1)-closure of G is hyper-Hamiltonian.



Definition 8 Let P be a property defined for all graphs of order n and k be a
nonnegative integer. We say that P is a k-stable property if for all pairs of non
adjacent vertices u and v in a graph G of n order, whenever dg(u) + dg(v) > k
and G + uv has property P and then GG must have property P.
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2. the property of being Hamiltonian is n-stable.



Definition 8 Let P be a property defined for all graphs of order n and k be a
nonnegative integer. We say that P is a k-stable property if for all pairs of non
adjacent vertices u and v in a graph G of n order, whenever dg(u) + dg(v) > k
and G + uv has property P and then GG must have property P.

In [2], it was proved for P a property defined for all graphs of order n:

1. If P is a k-stable property such that the k-closure has the property P then G
has the property P.

2. the property of being Hamiltonian is n-stable.

Proposition. 9 The property of being hyper-Hamiltonian is (n + 1)-stable.



3. Spectral conditions for hyper-Hamiltonicity

3.1. Spectral conditions for hyper-Ham on spectral radius of adja-
cency matrix

The adjacency matrix of GG, A = [a;}|, is the n x n matrix for which the entries are
a;; = 1if ij € E(G), and 0 otherwise.
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3. Spectral conditions for hyper-Hamiltonicity

3.1. Spectral conditions for hyper-Ham on spectral radius of adja-
cency matrix

The adjacency matrix of GG, A = [a;}|, is the n x n matrix for which the entries are
a;; = 1if ij € E(G), and 0 otherwise.

The eigenvalues of A are also called the eigenvalues of GG. We write Spec(G)
for the multi-set of eigenvalues of G.

Let A\(G) denote the spectral radius of the adjacency matrix of a graph G, i.e.,
its largest eigenvalue.
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Figure 9: Graph G.
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Figure 9: Graph G.

The adjacency matrix of GG is

010711
10101
AG)=[01000
1000 1
(11010,

92,6412 0,7237 —0,5892 —1
spect(G) = ] ) ) )

Thus A(G) = 2, 6412.

1, 7757
1



In 2010, Fiedler and Nikiforov [/] gave some bounds on the spectral radius of
a graph G and also on the spectral radius of its complement, G, implying the
existence of Hamiltonian cycles in G.
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In 2010, Fiedler and Nikiforov [/] gave some bounds on the spectral radius of
a graph G and also on the spectral radius of its complement, G, implying the
existence of Hamiltonian cycles in G.

Theorem 10 [/] Let G be a graph with n > 3 vertices. If \(G) > n — 2 then G
is Hamiltonian unless G = P,,_;.
If \(G) < /n —2 then G is Hamiltonian unless G = P,,_;.

These results motivated many other spectral conditions for Hamiltonicity, as in
[14] and [13], for instance.



Theorem 11 Let GG be a graph with n vertices. If \(G) > —
then GG is hyper-Hamiltonian or G =P, | + e.

1
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Theorem 11 Let G be a graph with n vertices. If \(G) > —1 + \/(n — 5)2 +2
then GG is hyper-Hamiltonian or G =P, | + e.

Sketch of the proof: Using —% + \/(n — %)2 +2 > n — 2 we have that G is
Hamiltonian.



Theorem 11 Let G be a graph with n vertices. If \(G) > —1 + \/(n — 5)2 +2
then GG is hyper-Hamiltonian or G =P, | + e.

Sketch of the proof: Using —% + \/(n — %)2 +2 > n — 2 we have that G is
Hamiltonian.

Stanley’s inequality (A(G) < —1 + 1/2m + 1, where m is the number of edges
in ), furnishes thus

1 3\ 2 1 1
— _ — < —
2+\/<n 2) +2 < AG) < 5+ 2m—|-4

g 6
which implies m > % , which allows the use of Theorem 5, concluding

the proof.




Theorem 12 Let GG be a graph with n vertices and \(G) be the spectral radius of

its complement G. If \(G) < \/(”7_2) — (™=2) then G is hyper-Hamiltonian or
G = Pn—l aF @

Sketch of the proof: Assuming that G is not hyper-Hamiltonian, Proposition 7
tells us that its n + 1-closure [ is not either.

Furthermore, for every pair of nonadjacent vertices u and v of I, d;(u)+d;(v) <
(n+1)—1=n.

Turning to the complement I and applying Hofmeister's inequality

(A= \JEH (@) + ...+ (vn)
to I, we achieve a contradiction.




3.2. Spectral conditions for hyper-Ham on spectral radius of matri-
ces Q and D

Let Deg(G) be the diagonal matrix whose (i,7)-entry is the degree of vertex v;
and A(G) the adjacency matrix of G. The matrix Q(G) = Deg(G) + A(G) is the
signless Laplacian matrix of G.
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Let Deg(G) be the diagonal matrix whose (i,7)-entry is the degree of vertex v;
and A(G) the adjacency matrix of G. The matrix Q(G) = Deg(G) + A(G) is the
signless Laplacian matrix of G.



Figure 10: Graph
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The signless Laplacian spectral radius of GG is the largest eigenvalue of Q(G),
denoted by ¢;(G).

Similar to what is done in [14], we obtain a condition for hyper-Hamiltonicity,
based on this parameter.



Consider the set of graphs on n vertices

En={G:G=PV (K,UK, 49),aeN/1<a+2<n}U
{G : G is bipartite and n/2-regular } U
{G:H\/F:H is <g—r)—regularand | F|l=r< g}
where V indicates the join operation.



Consider the set of graphs on n vertices

En={G:G=PV (K,UK, 49),aeN/1<a+2<n}U
{G : G is bipartite and n/2-regular } U

{G:H\/F:His <g—r)—regularand \F\:r<g}

where V indicates the join operation.

Theorem 13 Let GG be a graph with n vertices, for n > 3.

If (G) <n—2andG ¢ &, then G is hyper-Hamiltonian.



Let D(G) be the distance matrix of a connected graph G, that is, the matrix
whose (i, j)-entry is d(v;,v;), the distance between vertices v; and v;.



Let D(G) be the distance matrix of a connected graph G, that is, the matrix
whose (i, j)-entry is d(v;,v;), the distance between vertices v; and v;.

Figure 11: G.

Exemplo 14

— = N

D(G) =

W N~ = O
N = = O
N = O = =
O~ NN W

We denote by p(() the spectral radius of D(G) (largest eigenvalue of D(G)).
The graph in example has p(G) = 6,2161.



We denote by p(() the spectral radius of D(G) (largest eigenvalue of D(G)).



We denote by p(() the spectral radius of D(G) (largest eigenvalue of D(G)).

Theorem 15 Let GG be a connected graph with n > 4 vertices.
—1 2) —2
I p(q) < nZ Vet
n

then GG is hyper-Hamiltonian or G =P, 1 + e.



Theorem 16 Let G be a connected graph with n > 4 vertices, such that G is
connected.

If p(G) >n—3 +3\/(n — %)2 + 2 then G is hyper-Hamiltonian or G = P, +e.




Theorem 16 Let G be a connected graph with n > 4 vertices, such that G is
connected.

If p(G) >n—3 +3\/(n — %)2 + 2 then G is hyper-Hamiltonian or G = P, +e.
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4. Hyper-Hamiltonian threshold graphs

Now, we will provide conditions for hyper-Hamiltonicity on threshold graphs based
on their Laplacian matrix eigenvalues.

Recall that the Laplacian matrix of G is given by L(G) = Deg(G) — A(G).

We shall denote the eigenvalues of L(() in non increasing order as

p1 2 g = -0 = iy = iy = 0.

The eigenvalue 1, 1 is called the algebraic connectivity of G and denoted a(G).



Graph

Figure 12:
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In this section, unlike what was done previously, we will restrict our results to a
specific class of graphs, namely, threshold graphs.
Threshold graphs are graphs free of P;, Cy and 2K, [4].

Hamiltonicity in threshold graphs is studied in [0] under a non spectral approach.
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from its degree sequence. This result and Theorem 2 imply the following theorem.
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In [11] it is shown that Laplacian eigenvalues of a threshold graph can be obtained
from its degree sequence. This result and Theorem 2 imply the following theorem.

Theorem 17 Let GG be a threshold graph with n vertices.
If tty_ 1+ pt,—o >n+ 1 then G is hyper-Hamiltonian.

Sketch of proof: Supose 11, 1 + pi, 0 > n+ 1.

Let di > dy > ... > d,, be the degree sequence of vertices of (.

From Merris’ result,

MHn—1 = dn and Hn—2 = dn—l-

Since d,, and d,,_; are the two smallest degrees among vertices of G, we have
that for each pair of non adjacent vertices v, vy of G

dG(Ul) + dG(UQ) > dy+dy1 = fn—1+ fp—2 =N+ 1.

From Theorem 2, G is hyper- Hamiltonian.



An immediate consequence is the next corollary.

Corollary 18 Let GG be a threshold graph with n vertices.
If a(G) > "I+ then G is hyper-Hamiltonian.



We may note that different matrices do not produce the same conclusion con-
sidering hyperhmiltonicity of graphs as can be seen in the following example:



Figure 13: Two hyper-Hamiltonian graphs of Example 19.

Exemplo 19 Both hyper-Hamiltonian graphs in Figure 2 have 10 vertices and non
connected complements.
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Exemplo 19 Both hyper-Hamiltonian graphs in Figure 2 have 10 vertices and non
connected complements.

The graph G on the left hasm = 39, A\(G1) = 8,126, \(G}) = 2,44, :(G;) =
7, p(G1) = 10,43, p1,—1(G1) = 3 and p,—2(G1) = 9.

The graph (G, satisfies the conditions of Theorems 5, 11, 13, 15 and 17, but it
does not satisfy conditions of Theorem 12 nor Corollary 18.
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Exemplo 19 Both hyper-Hamiltonian graphs in Figure 2 have 10 vertices and non
connected complements.

The graph G on the left hasm = 39, A\(G1) = 8,126, \(G}) = 2,44, :(G;) =
7, p(G1) = 10,43, p1,—1(G1) = 3 and p,—2(G1) = 9.

The graph (G, satisfies the conditions of Theorems 5, 11, 13, 15 and 17, but it
does not satisfy conditions of Theorem 12 nor Corollary 18.



Figure 14: Two hyper-Hamiltonian graphs of Example 19.

Exemplo 20 The graph G on the left has m = 38, \(G3) = 7,93, \(G3) = 2,68,
¢1(G2) = 7,13, p(G2) = 10,64, p,—1(Ga) = 3 and p1,—2(G2) = 7.

Therefore, (G5 satisfies Theorems 5 and 13 but do not satisfies Theorems 11, 12,
15 or 17.



References

[1] M. Albert, R.E.L. Aldread, D. Holton, J. Sheehan, On 3*-connected graphs,
Aust. J. Combin., 24 (2001), 193-207

[2] A. Bondy, V. Chvatal, A method in graph theory, Discrete Math., 15 (1976)
111-135.

[3] S. Butler, F. Chung, Small spectral gap in the combinatorial Laplacian implies
Hamiltonian, Annals Comb. 13 (2010) 403-412.

[4] V. Chvatal, P. L. Hammer, Aggregation of inequalities in integer programming,
in Studies in Integer Programming, Annals of Discrete Mathematics 1, 145-
162, North-Holland, Amsterdam, 1977.

[5] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., (3)
2 (1952) 69-81.

[6] F. Harary, U.N.Peled, Hamiltonian threshold graphs, Discrete Appl. Math.
16:11-15(1987).

[7] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear
Algebra and its Applications 432 (2010), 2170-2173.



[8] J.A.Gallian and D.Witte. When the Cartesian Product of Two Directed Cycles
is Hyperhamiltonian. Journal of Graph Theory, Vol.11, No.1, 21-24 (1987)

[9] M. Lu, H. Liu, F. Tian, Spectral radius and Hamiltonian graphs, Linear Algebra
and its Applications 437 (2012) 1670-1674.

[10] T.-C. Mai, J.-J. Wang and L.-H. Hsu, Hyperhamiltonian generalized Petersen
graphs, Computer & Mathematics with applications, 55 (2008), no. 9, 2076-
2085

[11] R.Merris, Degree maximal graphs are Laplacian integral, Linear Algebra and
its Applications, 199 (1994), 381-389.

[12] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.

[13] Liu Zhong-zhu, Lin Si-si, Yang Guo-giang. Distance Spectral Radius and Hamil-
tonicity, Journal of Huizhou University. Vol. 33 6 (2013), 40-43.

[14] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra
and its Applications, 432 (2010), 566-570.



	Introduction
	General conditions for hyper - Hamiltonian graphs
	Spectral conditions for hyper-Hamiltonicity
	Spectral conditions for hyper-Ham on spectral radius of adjacency matrix
	Spectral conditions for hyper-Ham on spectral radius of matrices Q and D

	Hyper-Hamiltonian threshold graphs

