The Graceful Game

Luisa Frickes¹, Simone Dantas¹ and Atílio G. Luiz²

Universidade Federal Fluminense¹ and Universidade Federal do Ceará² frickesluisa@id.uff.br, sdantass@id.uff.br and gomes.atilio@ufc.br

1 Introduction

One of the most studied graph labelings is the graceful labeling, so named by S. W. Golomb [2] and initially introduced by A. Rosa [3] in 1996. A graceful labeling of a graph G with m edges is an injective function $f: V(G) \rightarrow \{0, 1, \ldots, m\}$ such that, when each edge $uv \in E(G)$ is assigned the (induced) label g(uv) = |f(u) - f(v)|, all induced edge la-

2 **Results**

bels are distinct. Labeling problems are usually studied from the perspective of determining whether a given graph has a required labeling or not. An alternative perspective is to analyze labeling problems from the point of view of combinatorial games. We investigate the Graceful Game, first proposed by Tuza [4].

The *Graceful Game* is defined in the following way: Alice and Bob alternately assign a previously unused label $\phi(v) \in \{0, \ldots, m\}$ to a previously unlabeled vertex v of a given graph G. If both endpoints of an edge $uv \in E(G)$ are labeled, the *label* of uv is defined as $|\phi(u) - \phi(v)|$. A move (label assignment) is said to be *legal* if, after it, all edge labels are distinct. Alice *wins* the game if the whole graph G is gracefully labeled, and Bob *wins* if he can prevent this. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, hypercubes and powers of paths [1].

A₁: 0

	STARS	К _{1,n-1}	Alice wins	Bob wins
	COMPLETE	К _з	Alice wins	Alice wins
	GRAPHS	K4	Bob wins	Bob wins
	CYCLES	C3	Alice wins	Alice wins
		C _n , n ≥ 4	Bob wins	Bob wins

Figure 4: Graceful Game results

Figure 1: One of the cases for a match of the graceful game on K_3 where Alice starts.

Figure 2: Bob's strategy for a case of a match on P_{\perp}^2 where he is the first player.

HYPERCUBES	Q _k , k ≥ 2	Bob wins	Bob wins
POWER OF	P3 ²	Alice wins	Alice wins
PATHS	P_n^2 , $n \ge 4$	Bob wins	Bob wins

Figure 5: Graceful Game results

3 Conclusion

This work contributes to the advancement of the study of the graceful labeling regarding the classes of graphs approached in the article. These results were presented and published at the 17th Cologne-Twente Workshop on Graphs Combinatorial Optimization University of Twente [1].

References

[1] L. Frickes, S. Dantas, and A.G. Luiz. Graceful game. In: 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW 2019), 2019, Enschede. Proceedings of 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW 2019), 1:41–44, 2019.

[2] S. W. Golomb. *Graph Theory and Computing*, chapter How to number a

				_ •
			. .	

Figure 3: Bob's strategy on C_4 where here is the first player.

graph, pages 23–37. Academic Press, New York, 1972.

[3] A. Rosa. On certain valuations of the vertices of a graph. *Theory of Graphs, International Symposium, Rome, July 1966*, pages 349–355, 1967.

[4] Z. Tuza and X. Zhu. *Topics in Chromatic Graph Theory*, volume 156 of *Encyclopedia of Mathematics and Its Applications*, chapter Colouring games, pages 304–326. Cambridge University Press, 2015.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq and FAPERJ.