
On Undirected Two-commodity Integral Flow, Disjoint Paths
and Strict Terminal Connection Problems

Alexsander A. de Melo1 Celina M. H. de Figueiredo1 Uéverton S. Souza2

1Federal University of Rio de Janeiro, Brazil
2Federal Fluminense University, Brazil

September 30, 2020

Seminário de Combinatória do IME-UFF

September 2020 1 / 20

Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20

Complexity of Multicommodity Flow

MAXIMUM FLOW is polynomial-time solvable.

By using linear programming, MULTICOMMODITY FLOW can be solved in
polynomial-time if the flows are real-valued functions.

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is
NP-complete if the flows must be integral-valued functions.

Even, Itai and Shamir (1976) proved that TWO-COMMODITY INTEGRAL FLOW is
NP-complete, even if the demand d1 is unitary.

Fortune, Hopcroft and Wyllie (1980) proved that TWO-COMMODITY INTEGRAL

FLOW is NP-complete, even if both demands d1 and d2 are unitary.

Introduction September 2020 3 / 20

Complexity of Multicommodity Flow

MAXIMUM FLOW is polynomial-time solvable.

By using linear programming, MULTICOMMODITY FLOW can be solved in
polynomial-time if the flows are real-valued functions.

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is
NP-complete if the flows must be integral-valued functions.

Even, Itai and Shamir (1976) proved that TWO-COMMODITY INTEGRAL FLOW is
NP-complete, even if the demand d1 is unitary.

Fortune, Hopcroft and Wyllie (1980) proved that TWO-COMMODITY INTEGRAL

FLOW is NP-complete, even if both demands d1 and d2 are unitary.

Introduction September 2020 3 / 20

Complexity of Multicommodity Flow

MAXIMUM FLOW is polynomial-time solvable.

By using linear programming, MULTICOMMODITY FLOW can be solved in
polynomial-time if the flows are real-valued functions.

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is
NP-complete if the flows must be integral-valued functions.

Even, Itai and Shamir (1976) proved that TWO-COMMODITY INTEGRAL FLOW is
NP-complete, even if the demand d1 is unitary.

Fortune, Hopcroft and Wyllie (1980) proved that TWO-COMMODITY INTEGRAL

FLOW is NP-complete, even if both demands d1 and d2 are unitary.

Introduction September 2020 3 / 20

Complexity of Multicommodity Integral Flow

Directed case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 2: NP-c
Even if di = 1 ∀i

(Fortune et al., 1980)

Undirected case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 1: Poly
If di is fixed ∀i
(Roberson and
Seymour, 1995)

Fixed k ≥ 2: NP-c
d1 and d2 are both

arbitrarily large
(Even et al., 1976)

Fixed k ≥ 2: Open
if di is fixed ∀i 6= k and

only dk is arbitrarily large

Introduction September 2020 4 / 20

Complexity of Multicommodity Integral Flow

Directed case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 2: NP-c
Even if di = 1 ∀i

(Fortune et al., 1980)

Undirected case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 1: Poly
If di is fixed ∀i
(Roberson and
Seymour, 1995)

Fixed k ≥ 2: NP-c
d1 and d2 are both

arbitrarily large
(Even et al., 1976)

Fixed k ≥ 2: Open
if di is fixed ∀i 6= k and

only dk is arbitrarily large

Introduction September 2020 4 / 20

Complexity of Multicommodity Integral Flow

Directed case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 2: NP-c
Even if di = 1 ∀i

(Fortune et al., 1980)

Undirected case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 1: Poly
If di is fixed ∀i
(Roberson and
Seymour, 1995)

Fixed k ≥ 2: NP-c
d1 and d2 are both

arbitrarily large
(Even et al., 1976)

Fixed k ≥ 2: NP-c
Even if di = 1 ∀i 6= k and
only dk is arbitrarily large

Introduction September 2020 4 / 20

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t1} and {s2, t2}, where s1, t1,
s2 and t2 are vertices of G, and two demands d1, d2 ∈ Z+.

Question: Are there two flow functions f1, f2 : {−→uv ,−→vu | uv ∈ E(G)} → Z+
0 such that

1 for each i ∈ {1, 2} and each edge uv ∈ E(G),

fi (
−→uv) = 0 or fi (

−→vu) = 0;

2 for each i ∈ {1, 2} and each vertex v ∈ V (G) \ {si , ti}, the flow
function fi is conserved at v , i.e.∑

u∈NG(v)

fi (
−→uv) =

∑
u∈NG(v)

fi (
−→vu);

3 for each i ∈ {1, 2}, the net flow from si is at least di , i.e.∑
v∈NG(si)

(fi (
−→si v)− fi (

−→vsi)) ≥ di ;

4 for each edge uv ∈ E(G), the total flow through uv is at most 1, i.e.

max {f1(
−→uv), f1(

−→vu)} + max {f2(
−→uv), f2(

−→vu)} ≤ 1?

Introduction September 2020 5 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

SIMPLE U2CIF remains NP-complete when the demand of one commodity is
unitary.

Polynomial-time reduction from 3-SAT:

I = (X , C) 7−→ g(I) = (G, {s1, t1}, {s2, t2}, d1, d2)

Define d1 = 1 and d2 = 5m, where m = |C|.

For each variable xi ∈ X , create the gadget Hi :

pi : number of occurrences of xi qi : number of occurrences of x i

Simple U2CIF with a Unitary Demand September 2020 6 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

SIMPLE U2CIF remains NP-complete when the demand of one commodity is
unitary.

Polynomial-time reduction from 3-SAT:

I = (X , C) 7−→ g(I) = (G, {s1, t1}, {s2, t2}, d1, d2)

Define d1 = 1 and d2 = 5m, where m = |C|.

For each variable xi ∈ X , create the gadget Hi :

pi : number of occurrences of xi qi : number of occurrences of x i

Simple U2CIF with a Unitary Demand September 2020 6 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

SIMPLE U2CIF remains NP-complete when the demand of one commodity is
unitary.

Polynomial-time reduction from 3-SAT:

I = (X , C) 7−→ g(I) = (G, {s1, t1}, {s2, t2}, d1, d2)

Define d1 = 1 and d2 = 5m, where m = |C|.

For each variable xi ∈ X , create the gadget Hi :

pi : number of occurrences of xi qi : number of occurrences of x i

Simple U2CIF with a Unitary Demand September 2020 6 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

SIMPLE U2CIF remains NP-complete when the demand of one commodity is
unitary.

Polynomial-time reduction from 3-SAT:

I = (X , C) 7−→ g(I) = (G, {s1, t1}, {s2, t2}, d1, d2)

Define d1 = 1 and d2 = 5m, where m = |C|.

For each variable xi ∈ X , create the gadget Hi :

pi : number of occurrences of xi qi : number of occurrences of x i

Simple U2CIF with a Unitary Demand September 2020 6 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Connect the variable gadgets in series:

Add the edges s1vs
1 and v t

nt1 .

Simple U2CIF with a Unitary Demand September 2020 7 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Connect the variable gadgets in series:

Add the edges s1vs
1 and v t

nt1 .

Simple U2CIF with a Unitary Demand September 2020 7 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Connect the variable gadgets in series:

Add the edges s1vs
1 and v t

nt1 .

Simple U2CIF with a Unitary Demand September 2020 7 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Connect the variable gadgets in series:

Add the edges s1vs
1 and v t

nt1 .

Simple U2CIF with a Unitary Demand September 2020 7 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .

Simple U2CIF with a Unitary Demand September 2020 8 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Simple U2CIF with a Unitary Demand September 2020 9 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Simple U2CIF with a Unitary Demand September 2020 9 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Simple U2CIF with a Unitary Demand September 2020 9 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Simple U2CIF with a Unitary Demand September 2020 9 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Simple U2CIF with a Unitary Demand September 2020 10 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Simple U2CIF with a Unitary Demand September 2020 10 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Simple U2CIF with a Unitary Demand September 2020 10 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Simple U2CIF with a Unitary Demand September 2020 10 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary.

Simple U2CIF with a Unitary Demand September 2020 10 / 20

NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).

Lemma

g(I) is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

Theorem

SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary.

Simple U2CIF with a Unitary Demand September 2020 10 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false

Simple U2CIF with a Unitary Demand September 2020 11 / 20

Disjoint Paths

SIMPLE MULTICOMMODITY INTEGRAL FLOW and
k -EDGE-DISJOINT PATHS are polynomially equivalent.

SIMPLE U2CIF with a unitary demand coincides with
1 + d -EDGE-DISJOINT PATHS.

Corollary

1 + d -EDGE-DISJOINT PATHS is NP-complete.

By taking the line graph, 1 + d -VERTEX-DISJOINT PATHS is also NP-complete.

Disjoint paths September 2020 12 / 20

Disjoint Paths

SIMPLE MULTICOMMODITY INTEGRAL FLOW and
k -EDGE-DISJOINT PATHS are polynomially equivalent.

SIMPLE U2CIF with a unitary demand coincides with
1 + d -EDGE-DISJOINT PATHS.

Corollary

1 + d -EDGE-DISJOINT PATHS is NP-complete.

By taking the line graph, 1 + d -VERTEX-DISJOINT PATHS is also NP-complete.

Disjoint paths September 2020 12 / 20

Disjoint Paths

SIMPLE MULTICOMMODITY INTEGRAL FLOW and
k -EDGE-DISJOINT PATHS are polynomially equivalent.

SIMPLE U2CIF with a unitary demand coincides with
1 + d -EDGE-DISJOINT PATHS.

Corollary

1 + d -EDGE-DISJOINT PATHS is NP-complete.

By taking the line graph, 1 + d -VERTEX-DISJOINT PATHS is also NP-complete.

Disjoint paths September 2020 12 / 20

Disjoint Paths

SIMPLE MULTICOMMODITY INTEGRAL FLOW and
k -EDGE-DISJOINT PATHS are polynomially equivalent.

SIMPLE U2CIF with a unitary demand coincides with
1 + d -EDGE-DISJOINT PATHS.

Corollary

1 + d -EDGE-DISJOINT PATHS is NP-complete.

By taking the line graph, 1 + d -VERTEX-DISJOINT PATHS is also NP-complete.

Disjoint paths September 2020 12 / 20

STRICT TERMINAL CONNECTION PROBLEM

Strict Terminal Connection Problem September 2020 13 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T) = W .

W → terminals;

V (T) \W with degree = 2 in T → linkers;

V (T) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T)| ≤ ` and |R(T)| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

Strict Terminal Connection Problem September 2020 14 / 20

Complexity of S-TCP

Solvable in time nO(`+r) (Dourado et al., 2014).

W [2]-hard when parameterized by r even if ` ≥ 0 is constant (Melo et al., 2020).

NP-complete even if ` ≥ 0 is constant and ∆(G) = 4 (Melo et al., 2020).

Solvable in time 2O(` log n) when ∆(G) = 3 but assuming ETH there is no
2o(`+n)-time algorithm even if ∆(G) = 3 (Melo et al., 2020).

FPT when parameterized by `, r ,∆(G) but No-poly Kernel
(Dourado et al., 2014; Melo et al., 2020).

Polynomial-time solvable when r ∈ {0, 1} (Melo et al., 2017)

Turing reduction to MIN-SUM st -VDP.

Open problem

Is there an nO(r)-time algorithm for S-TCP?

Strict Terminal Connection Problem September 2020 15 / 20

Complexity of S-TCP

Solvable in time nO(`+r) (Dourado et al., 2014).

W [2]-hard when parameterized by r even if ` ≥ 0 is constant (Melo et al., 2020).

NP-complete even if ` ≥ 0 is constant and ∆(G) = 4 (Melo et al., 2020).

Solvable in time 2O(` log n) when ∆(G) = 3 but assuming ETH there is no
2o(`+n)-time algorithm even if ∆(G) = 3 (Melo et al., 2020).

FPT when parameterized by `, r ,∆(G) but No-poly Kernel
(Dourado et al., 2014; Melo et al., 2020).

Polynomial-time solvable when r ∈ {0, 1} (Melo et al., 2017)

Turing reduction to MIN-SUM st -VDP.

Open problem

Is there an nO(r)-time algorithm for S-TCP?

Strict Terminal Connection Problem September 2020 15 / 20

S-TCP fixed r ≥ 2: Combination of two problems

PROBLEM I. Connecting the terminals to
the routers.

Turing reducible to MIN-SUM st -VDP.

Polynomial-time solvable even for r
arbitrarily large.

PROBLEM II. Connecting the routers to
one another.

Polynomial-time reducible to S-TCP.

For r ≤ 3, polynomial-time solvable by a
Turing reduction to MIN-SUM st -VDP.

For fixed r ≥ 4, the complexity is
unsettled.

Polynomial-time reducible to SHORTEST

K -CYCLE, whose complexity for fixed |K |
is a long-standing open question.

Strict Terminal Connection Problem September 2020 16 / 20

S-TCP fixed r ≥ 2: Combination of two problems

PROBLEM I. Connecting the terminals to
the routers.

Turing reducible to MIN-SUM st -VDP.

Polynomial-time solvable even for r
arbitrarily large.

PROBLEM II. Connecting the routers to
one another.

Polynomial-time reducible to S-TCP.

For r ≤ 3, polynomial-time solvable by a
Turing reduction to MIN-SUM st -VDP.

For fixed r ≥ 4, the complexity is
unsettled.

Polynomial-time reducible to SHORTEST

K -CYCLE, whose complexity for fixed |K |
is a long-standing open question.

Strict Terminal Connection Problem September 2020 16 / 20

S-TCP fixed r ≥ 2: Combination of two problems

PROBLEM I. Connecting the terminals to
the routers.

Turing reducible to MIN-SUM st -VDP.

Polynomial-time solvable even for r
arbitrarily large.

PROBLEM II. Connecting the routers to
one another.

Polynomial-time reducible to S-TCP.

For r ≤ 3, polynomial-time solvable by a
Turing reduction to MIN-SUM st -VDP.

For fixed r ≥ 4, the complexity is
unsettled.

Polynomial-time reducible to SHORTEST

K -CYCLE, whose complexity for fixed |K |
is a long-standing open question.

Strict Terminal Connection Problem September 2020 16 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.

Strict Terminal Connection Problem September 2020 17 / 20

Relationship: Disjoint paths and S-TCP

CONNECTED ROUTER

SUBGRAPH fixed |R|
MIN-SUM st -VDP
(Suurballe, 1974)

CONNECTED ROUTER

SUBGRAPH (Melo,
2020)

Problem (I)

CONSTRAINED

TERMINAL PARTITION

fixed r

SHORTEST K -CYLE

fixed |K |
Problem (II) |R| ≤ 3

CONSTRAINED

ROUTER TOPOLOGY

fixed r

Problem (II) fixed |R|

CONSTRAINED

ROUTER TOPOLOGY

r = 2

CONSTRAINED

ROUTER SET |R| = 2
CONSTRAINED

ROUTER SET fixed |R| S-TCP r = 1

1 + d VDP MIN-SUM 1 + d VDP S-TCP r = 2 S-TCP fixed r

S-TCP fixed r, |W|
No linker restriction

S-TCP fixed r, |W| MIN-SUM VDP fixed k

VERTEX DISJOINT

PATHS fixed k
(Robertson and
Seymour, 1995)

(Melo, 2016)

Strict Terminal Connection Problem September 2020 18 / 20

Open problems

Are 1 + d -EDGE-DISJOINT PATHS and 1 + d -VERTEX-DISJOINT PATHS on planar
graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261–283.

Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed k ≥ 2?

Is S-TCP parameterized by r in XP?

Is S-TCP parameterized by |W | in FPT (or in XP)?

Strict Terminal Connection Problem September 2020 19 / 20

Open problems

Are 1 + d -EDGE-DISJOINT PATHS and 1 + d -VERTEX-DISJOINT PATHS on planar
graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261–283.

Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed k ≥ 2?

Is S-TCP parameterized by r in XP?

Is S-TCP parameterized by |W | in FPT (or in XP)?

Strict Terminal Connection Problem September 2020 19 / 20

Open problems

Are 1 + d -EDGE-DISJOINT PATHS and 1 + d -VERTEX-DISJOINT PATHS on planar
graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261–283.

Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed k ≥ 2?

Is S-TCP parameterized by r in XP?

Is S-TCP parameterized by |W | in FPT (or in XP)?

Strict Terminal Connection Problem September 2020 19 / 20

Thank you for your attention!
(https://doi.org/10.1002/net.21976)

Alexsander A. de Melo
aamelo@cos.ufrj.br

Strict Terminal Connection Problem September 2020 20 / 20

https://doi.org/10.1002/net.21976

	Introduction
	Simple U2CIF with a Unitary Demand
	Disjoint paths
	Strict Terminal Connection Problem

