# On Undirected Two-commodity Integral Flow, Disjoint Paths and Strict Terminal Connection Problems 

Alexsander A. de Melo ${ }^{1} \quad$ Celina M. H. de Figueiredo ${ }^{1} \quad$ Uéverton S. Souza ${ }^{2}$
${ }^{1}$ Federal University of Rio de Janeiro, Brazil
${ }^{2}$ Federal Fluminense University, Brazil

September 30, 2020

Seminário de Combinatória do IME-UFF

## Introduction

- MAXIMUM FLOW

■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;


## Introduction

- Maximum flow

■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;


## Introduction

- Maximum flow

■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;

- Constraints: Edge capacity and Flow conservation.



## Introduction

- Maximum flow (Single-commodity flow)
- Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;
- Constraints: Edge capacity and Flow conservation.



## Introduction

■ MaXimum flow (Single-commodity flow)

- Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;
- Constraints: Edge capacity and Flow conservation.

- Multicommodity flow

■ Multiple commodities: $\left\{s_{i}, t_{i}\right\}$;

- Each commodity $\left\{s_{i}, t_{i}\right\}$ has a different demand $d_{i}$;



## Introduction

■ MaXimum flow (Single-commodity flow)
■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;

- Constraints: Edge capacity and Flow conservation.

- Multicommodity flow

■ Multiple commodities: $\left\{s_{i}, t_{i}\right\}$;

- Each commodity $\left\{s_{i}, t_{i}\right\}$ has a different demand $d_{i}$;



## Introduction

■ MaXimum flow (Single-commodity flow)
■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;

- Constraints: Edge capacity and Flow conservation.

- Multicommodity flow

■ Multiple commodities: $\left\{s_{i}, t_{i}\right\}$;

- Each commodity $\left\{s_{i}, t_{i}\right\}$ has a different demand $d_{i}$;



## Introduction

■ MaXimum flow (Single-commodity flow)
■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;

- Constraints: Edge capacity and Flow conservation.

- Multicommodity flow

■ Multiple commodities: $\left\{s_{i}, t_{i}\right\}$;

- Each commodity $\left\{s_{i}, t_{i}\right\}$ has a different demand $d_{i}$;



## Introduction

■ Maximum flow (Single-commodity flow)
■ Goal: send the maximum possible amount of flow from the source $s$ into the sink $t$;
■ Constraints: Edge capacity and Flow conservation.


- Multicommodity flow

■ Multiple commodities: $\left\{s_{i}, t_{i}\right\}$;

- Each commodity $\left\{s_{i}, t_{i}\right\}$ has a different demand $d_{i}$;

■ Goal: for each commodity $\left\{s_{i}, t_{i}\right\}$, send at least $d_{i}$ unities of flow from the source $s_{i}$ into the sink $t_{i}$;

- Constraints: Edge capacity and Flow conservation; The capacities of the edges are shared among the flow of each commodity.


## Complexity of Multicommodity Flow

- MAXIMUM FLOW is polynomial-time solvable.

■ By using linear programming, Multicommodity flow can be solved in polynomial-time if the flows are real-valued functions.

■ On the other hand, Karp (1975) proved that MuLticommodity flow is NP-complete if the flows must be integral-valued functions.

## Complexity of Multicommodity Flow

■ MAXIMUM FLOW is polynomial-time solvable.

■ By using linear programming, Multicommodity flow can be solved in polynomial-time if the flows are real-valued functions.

■ On the other hand, Karp (1975) proved that Multicommodity flow is NP-complete if the flows must be integral-valued functions.

- Even, Itai and Shamir (1976) proved that Two-commodity integral flow is NP-complete, even if the demand $d_{1}$ is unitary.


## Complexity of Multicommodity Flow

- MAXIMUM FLOW is polynomial-time solvable.

■ By using linear programming, MuLTICOMMODITY FLOW can be solved in polynomial-time if the flows are real-valued functions.

■ On the other hand, Karp (1975) proved that Multicommodity flow is NP-complete if the flows must be integral-valued functions.

- Even, Itai and Shamir (1976) proved that Two-commodity integral flow is NP-complete, even if the demand $d_{1}$ is unitary.

■ Fortune, Hopcroft and Wyllie (1980) proved that Two-COMMODITY integral FLOW is NP-complete, even if both demands $d_{1}$ and $d_{2}$ are unitary.

## Complexity of Multicommodity Integral Flow

| Directed case |  |  |
| :---: | :---: | :---: |

## Complexity of Multicommodity Integral Flow

| Directed case |  |  |
| :---: | :---: | :---: |


| Undirected case |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left\{\begin{array}{c} s_{1} \\ d_{1} \\ \cdots \\ d_{1} \\ t_{1} \end{array}\right\}$ |  | $\left\{\begin{array}{c} \delta_{0}^{s_{1}} \\ d_{1} \\ \cdots \end{array}\right\}\left\{\begin{array}{c} s_{1} \\ d_{2} \\ d_{2} \\ d_{2} \end{array}\right\}$ | $\left.d_{1}=1\right\}_{0}^{s_{1}}\{_{t_{1}}^{s_{2}} \underbrace{d_{2}}_{t_{2}}\}$ |
| $k=1: \text { Poly }$ <br> Even if $d_{1}$ is arbitrary <br> (Edmonds and Karp, 1972) | Fixed $k \geq 1$ : Poly If $d_{i}$ is fixed $\forall i$ (Roberson and Seymour, 1995) | Fixed $k \geq 2$ : NP-c $d_{1}$ and $d_{2}$ are both arbitrarily large (Even et al., 1976) | Fixed $k \geq 2$ : Open if $d_{i}$ is fixed $\forall i \neq k$ and only $d_{k}$ is arbitrarily large |

## Complexity of Multicommodity Integral Flow

| Directed case |  |  |
| :---: | :---: | :---: |


| Undirected case |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left\{\begin{array}{c} s_{1} \\ d_{1} \\ \cdots \\ t_{1} \end{array}\right\}$ | $\left\{\begin{array}{c} \overbrace{d_{1} \leq c_{1}}^{s_{1}} \\ t_{1} \\ t_{t_{k}} \end{array}\right.$ |  | $\left.d_{1}=1\right\}_{0}^{s_{1}}\left\{\begin{array}{c} s_{1} \\ d_{2} \\ d_{2} \\ t_{2} \end{array}\right\}$ |
| $k=1: \text { Poly }$ <br> Even if $d_{1}$ is arbitrary <br> (Edmonds and Karp, 1972) | Fixed $k \geq 1$ : Poly <br> If $d_{j}$ is fixed $\forall i$ <br> (Roberson and Seymour, 1995) | Fixed $k \geq 2$ : NP-c $d_{1}$ and $d_{2}$ are both arbitrarily large (Even et al., 1976) | Fixed $k \geq 2:$ NP-c <br> Even if $d_{i}=1 \quad \forall i \neq k$ and only $d_{k}$ is arbitrarily large |

## SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)
Input:
Question: Are there two flow functions $f_{1}, f_{2}:\{\overrightarrow{u v}, \overrightarrow{v u} \mid u v \in E(G)\} \rightarrow \mathbb{Z}_{0}^{+}$such that
1 for each $i \in\{1,2\}$ and each edge $u v \in E(G)$,

$$
f_{i}(\overrightarrow{u v})=0 \text { or } f_{i}(\overrightarrow{v u})=0
$$

2 for each $i \in\{1,2\}$ and each vertex $v \in V(G) \backslash\left\{s_{i}, t_{i}\right\}$, the flow function $f_{i}$ is conserved at $v$, i.e.

$$
\sum_{u \in N_{G}(v)} f_{i}(\overrightarrow{u v})=\sum_{u \in N_{G}(v)} f_{i}(\overrightarrow{v u})
$$

3 for each $i \in\{1,2\}$, the net flow from $s_{i}$ is at least $d_{i}$, i.e.

$$
\sum_{v \in N_{G}\left(s_{i}\right)}\left(f_{i}\left(\overrightarrow{s_{i}} \vec{v}\right)-f_{i}\left(\overrightarrow{v s_{i}}\right)\right) \geq d_{i}
$$

4 for each edge $u v \in E(G)$, the total flow through $u v$ is at most 1 , i.e.

$$
\max \left\{f_{1}(\overrightarrow{u v}), f_{1}(\overrightarrow{v u})\right\}+\max \left\{f_{2}(\overrightarrow{u v}), f_{2}(\overrightarrow{v u})\right\} \leq 1 ?
$$

## NP-completeness of SIMPLE U2CIF with a unitary demand

- SIMPLE U2CIF remains NP-complete when the demand of one commodity is unitary.


## NP-completeness of SIMPLE U2CIF with a unitary demand

- SIMPLE U2CIF remains NP-complete when the demand of one commodity is unitary.
- Polynomial-time reduction from 3-SAT:

$$
I=(X, \mathcal{C}) \longmapsto g(I)=\left(G,\left\{s_{1}, t_{1}\right\},\left\{s_{2}, t_{2}\right\}, d_{1}, d_{2}\right)
$$

## NP-completeness of SIMPLE U2CIF with a unitary demand

- SIMPLE U2CIF remains NP-complete when the demand of one commodity is unitary.
- Polynomial-time reduction from 3-SAT:

$$
I=(X, \mathcal{C}) \longmapsto g(I)=\left(G,\left\{s_{1}, t_{1}\right\},\left\{s_{2}, t_{2}\right\}, d_{1}, d_{2}\right)
$$

$\square$ Define $d_{1}=1$ and $d_{2}=5 m$, where $m=|\mathcal{C}|$.

## NP-completeness of SIMPLE U2CIF with a unitary demand

- Simple U2CIF remains NP-complete when the demand of one commodity is unitary.
- Polynomial-time reduction from 3-SAT:

$$
I=(X, \mathcal{C}) \longmapsto g(I)=\left(G,\left\{s_{1}, t_{1}\right\},\left\{s_{2}, t_{2}\right\}, d_{1}, d_{2}\right)
$$

- Define $d_{1}=1$ and $d_{2}=5 m$, where $m=|\mathcal{C}|$.
$\square$ For each variable $x_{i} \in X$, create the gadget $H_{i}$ :

$p_{i}$ : number of occurrences of $x_{i} \quad q_{i}$ : number of occurrences of $\bar{x}_{i}$


## NP-completeness of SIMPLE U2CIF with a Unitary Demand

- Connect the variable gadgets in series:



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

- Connect the variable gadgets in series:



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

- Connect the variable gadgets in series:
$\square$ Add the edges $s_{1} v_{1}^{s}$ and $v_{n}^{t} t_{1}$.



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

- Connect the variable gadgets in series:
$\square$ Add the edges $s_{1} v_{1}^{s}$ and $v_{n}^{t} t_{1}$.



## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand





## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand



## NP-completeness of SIMPLE U2CIF with a unitary demand


$\square$ Add the edges $u_{\iota}^{j} v_{i}^{2 \ell-1}$ and $v_{i}^{2 \ell} w_{\iota}^{j}$ if the $j$-th literal in $C_{\iota}$ corresponds to the $\ell$-th occurrence of the positive literal $x_{i}$;

- Add the edges $u_{\iota}^{j} \bar{v}_{i}^{2 \ell-1}$ and $\bar{v}_{i}^{2 \ell} w_{\iota}^{j}$ if the $j$-th literal in $C_{\iota}$ corresponds to the $\ell$-th occurrence of the negative literal $\bar{x}_{i}$.


## NP-completeness of SIMPLE U2CIF with a Unitary Demand

$$
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right)
$$



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

$$
I=\left(\boldsymbol{x}_{\mathbf{1}} \vee \boldsymbol{x}_{\mathbf{2}} \vee \boldsymbol{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right)
$$



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

$$
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{\boldsymbol{x}}_{\mathbf{1}} \vee \boldsymbol{x}_{\mathbf{2}} \vee \boldsymbol{x}_{\mathbf{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right)
$$



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

$$
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\boldsymbol{x}_{1} \vee \overline{\boldsymbol{x}_{\mathbf{2}}} \vee \overline{\boldsymbol{X}}_{3}\right)
$$



## NP-completeness of SIMPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.

## NP-completeness of SImPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.


## NP-completeness of SIMPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.


## NP-completeness of SImPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.


## NP-completeness of SImPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.


Lemma
$g(I)$ is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

## NP-completeness of SImPLE U2CIF with a Unitary Demand

## Lemma

If $g(I)$ is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses edges whose endpoints belong to $\left\{s_{1}, t_{1}\right\} \cup V\left(H_{1}\right) \cup \cdots \cup V\left(H_{n}\right)$.


Lemma
$g(I)$ is Yes instance of SIMPLE U2CIF if and only if I is a YES instance of 3-SAT.

## Theorem

SIMPLE U2CIF is NP-complete even if the demand of one commodity is unitary.

## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \bar{x}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(\boldsymbol{x}_{\mathbf{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{\boldsymbol{X}}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(\boldsymbol{x}_{\mathbf{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{\boldsymbol{X}}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(\boldsymbol{x}_{\mathbf{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{\boldsymbol{X}}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## An example

$$
\begin{gathered}
I=\left(\boldsymbol{x}_{\mathbf{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{\boldsymbol{X}}_{3}\right) \\
\alpha\left(x_{1}\right)=\text { true } \quad \alpha\left(x_{2}\right)=\text { true } \quad \alpha\left(x_{3}\right)=\text { false }
\end{gathered}
$$



## Disjoint Paths

- SIMPLE MULTICOMMODITY INTEGRAL FLOW and k-EDGE-DISJOINT PATHS are polynomially equivalent.



## Disjoint Paths

- SIMPLE MULTICOMMODITY INTEGRAL FLOW and k-EDGE-DISJOINT PATHS are polynomially equivalent.
- SIMPLE U2CIF with a unitary demand coincides with $1+d$-EDGE-DISJOINT PATHS.



## Disjoint Paths

- Simple multicommodity integral flow and k-EDGE-DISJOINT PATHS are polynomially equivalent.
- SIMPLE U2CIF with a unitary demand coincides with $1+d$-EDGE-DISJOINT PATHS.


[^0]
## Disjoint Paths

- Simple multicommodity integral flow and k-EDGE-DISJOINT PATHS are polynomially equivalent.
- SIMPLE U2CIF with a unitary demand coincides with $1+d$-EDGE-DISJOINT PATHS.


Corollary
$1+d$-EDGE-DISJOINT PATHS is NP-complete.
$\square$ By taking the line graph, $1+d$-vertex-DISJOINT PATHS is also NP-complete.

## Strict Terminal Connection Problem

## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.


## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.


## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.

- $W \rightarrow$ terminals;

■ $V(T) \backslash W$ with degree $=2$ in $T \rightarrow$ linkers;

- $V(T) \backslash W$ with degree $\geq 3$ in $T \rightarrow$ routers.



## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.

- $W \rightarrow$ terminals;

■ $V(T) \backslash W$ with degree $=2$ in $T \rightarrow$ linkers;

- $V(T) \backslash W$ with degree $\geq 3$ in $T \rightarrow$ routers.


Strict Terminal connection problem (S-TCP)
Input: $G, W \subseteq V(G)$ and $\ell, r \in \mathbb{Z}_{0}^{+}$
Question: Is there a strict connection tree $T$ of $G$ for $W$ s.t. $|\mathrm{L}(T)| \leq \ell$ and $|\mathrm{R}(T)| \leq r$ ?

[^1]Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965-2976.

## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.

- $W \rightarrow$ terminals;

■ $V(T) \backslash W$ with degree $=2$ in $T \rightarrow$ linkers;

- $V(T) \backslash W$ with degree $\geq 3$ in $T \rightarrow$ routers.


Strict Terminal connection problem (S-TCP)
Input: $G, W \subseteq V(G)$ and $\ell, r \in \mathbb{Z}_{0}^{+}$
Question: Is there a strict connection tree $T$ of $G$ for $W$ s.t. $|\mathrm{L}(T)| \leq \ell$ and $|\mathrm{R}(T)| \leq r$ ?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965-2976.

## Strict Terminal Connection Problem

A strict connection tree of $G$ for $W \subseteq V(G)$ is a tree subgraph $T$ of $G$ such that leaves $(T)=W$.

- $W \rightarrow$ terminals;

■ $V(T) \backslash W$ with degree $=2$ in $T \rightarrow$ linkers;

- $V(T) \backslash W$ with degree $\geq 3$ in $T \rightarrow$ routers.


Strict Terminal connection problem (S-TCP)
Input: $G, W \subseteq V(G)$ and $\ell, r \in \mathbb{Z}_{0}^{+}$
Question: Is there a strict connection tree $T$ of $G$ for $W$ s.t. $|\mathrm{L}(T)| \leq \ell$ and $|\mathrm{R}(T)| \leq r$ ?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965-2976.

## Complexity of S-TCP

- Solvable in time $n^{\mathcal{O}(\ell+r) \quad \text { (Dourado et al., 2014). }}$
- W[2]-hard when parameterized by $r$ even if $\ell \geq 0$ is constant (Melo et al., 2020).
$\square$ NP-complete even if $\ell \geq 0$ is constant and $\Delta(G)=4 \quad$ (Melo et al., 2020).
- Solvable in time $2^{\mathcal{O}(\ell \log n)}$ when $\Delta(G)=3$ but assuming ETH there is no $2^{o(\ell+n)}$-time algorithm even if $\Delta(G)=3 \quad$ (Melo et al., 2020).
- FPT when parameterized by $\ell, r, \Delta(G)$ but No-poly Kernel
(Dourado et al., 2014; Melo et al., 2020).
- Polynomial-time solvable when $r \in\{0,1\} \quad$ (Melo et al., 2017)

Turing reduction to Min-sum st-VDP.

## Complexity of S-TCP



- $W$ [2]-hard when parameterized by $r$ even if $\ell \geq 0$ is constant (Melo et al., 2020).
- NP-complete even if $\ell \geq 0$ is constant and $\Delta(G)=4 \quad$ (Melo et al., 2020).
- Solvable in time $2^{\mathcal{O}(\ell \log n)}$ when $\Delta(G)=3$ but assuming ETH there is no $2^{o(\ell+n)}$-time algorithm even if $\Delta(G)=3 \quad$ (Melo et al, 2020).

■ FPT when parameterized by $\ell, r, \Delta(G)$ but No-poly Kernel
(Dourado et al., 2014; Melo et al., 2020).

- Polynomial-time solvable when $r \in\{0,1\} \quad$ (Melo et al., 2017)

Turing reduction to MIN-SUM st-VDP.

## Open problem

Is there an $n^{\mathcal{O}(r)}$-time algorithm for S-TCP?

## S-TCP fixed $r \geq 2$ : Combination of two problems

Problem I. Connecting the terminals to the routers.

Problem II. Connecting the routers to one another.

## S-TCP fixed $r \geq 2$ : Combination of two problems

Problem I. Connecting the terminals to the routers.

- Turing reducible to Min-sum st-VDP.
- Polynomial-time solvable even for $r$ arbitrarily large.

Problem II. Connecting the routers to one another.

## S-TCP fixed $r \geq 2$ : Combination of two problems

Problem I. Connecting the terminals to the routers.

- Turing reducible to MIN-SUM st-VDP.
- Polynomial-time solvable even for $r$ arbitrarily large.

Problem II. Connecting the routers to one another.

- Polynomial-time reducible to S-TCP.
- For $r \leq 3$, polynomial-time solvable by a Turing reduction to MIN-SUM st-VDP.
- For fixed $r \geq 4$, the complexity is unsettled.
- Polynomial-time reducible to SHORTEST $K$-CYCLE, whose complexity for fixed $|K|$ is a long-standing open question.


## Some variants of S-TCP

- Constrained Router Set
- Constrained Terminal Partition
- Constrained Router Topology

■ Connected Router Subgraph

## Some variants of S-TCP

- Constrained Router Set
- Constrained Terminal Partition
- Constrained Router Topology

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set
- Constrained Terminal Partition
- Constrained Router Topology


■ Connected Router Subgraph

## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition
- Constrained Router Topology

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set Turing reduction from S-TCP.
- Constrained Terminal Partition
- Constrained Router Topology


■ Connected Router Subgraph

## Some variants of S-TCP

- Constrained Router Set Turing reduction from S-TCP.
- Constrained Terminal Partition

NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.

- Constrained Router Topology


■ Connected Router Subgraph

## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
■ Constrained Router Topology

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
- Constrained Router Topology


■ Connected Router Subgraph

## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
- Constrained Router Topology

NP-complete for each $r \geq 3$


Polynomial-time reduction from $1+d$-VDP.

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
- Constrained Router Topology NP-complete for each $r \geq 3$


Polynomial-time reduction from $1+d$-VDP.

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set

Turing reduction from S-TCP.

- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
- Constrained Router Topology NP-complete for each $r \geq 3$


Polynomial-time reduction from $1+d$-VDP.

- Connected Router Subgraph


## Some variants of S-TCP

- Constrained Router Set Turing reduction from S-TCP.
- Constrained Terminal Partition NP-complete for each $r \geq 2$
Polynomial-time reduction from $1+d$-VDP.
- Constrained Router Topology NP-complete for each $r \geq 3$


Polynomial-time reduction from $1+d$-VDP.

- Connected Router Subgraph

Polynomial-time solvable for constant $r \geq 2$
Turing reduction from MIN-SUM st-VDP.

## Relationship: Disjoint paths and S-TCP



## Open problems

- Are $1+d$-EDGE-DISJOINT PATHS and $1+d$-VERTEX-DISJOINT PATHS on planar graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261-283.

## Open problems

- Are $1+d$-EDGE-DISJOINT PATHS and $1+d$-VERTEX-DISJOINT PATHS on planar graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261-283.

■ Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed $k \geq 2$ ?

## Open problems

- Are $1+d$-EDGE-DISJOINT PATHS and $1+d$-VERTEX-DISJOINT PATHS on planar graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261-283.

■ Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed $k \geq 2$ ?

- Is S-TCP parameterized by $r$ in XP?

■ Is S-TCP parameterized by $|W|$ in FPT (or in XP)?

# Thank you for your attention! 

(https://doi.org/10.1002/net.21976)

Alexsander A. de Melo

aamelo@cos.ufrj.br


[^0]:    Corollary
    $1+d$-EDGE-DISJOINT PATHS is NP-complete.

[^1]:    Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.

