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Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW

(SINGLE-COMMODITY FLOW)

Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Introduction

MAXIMUM FLOW (SINGLE-COMMODITY FLOW)
Goal: send the maximum possible amount of flow from
the source s into the sink t ;

Constraints: Edge capacity and Flow conservation.

MULTICOMMODITY FLOW

Multiple commodities: {si , ti};
Each commodity {si , ti} has a different demand di ;

Goal: for each commodity {si , ti}, send at least di unities
of flow from the source si into the sink ti ;

Constraints: Edge capacity and Flow conservation;
The capacities of the edges are shared among the flow of
each commodity.

Introduction September 2020 2 / 20



Complexity of Multicommodity Flow

MAXIMUM FLOW is polynomial-time solvable.

By using linear programming, MULTICOMMODITY FLOW can be solved in
polynomial-time if the flows are real-valued functions.

On the other hand, Karp (1975) proved that MULTICOMMODITY FLOW is
NP-complete if the flows must be integral-valued functions.

Even, Itai and Shamir (1976) proved that TWO-COMMODITY INTEGRAL FLOW is
NP-complete, even if the demand d1 is unitary.

Fortune, Hopcroft and Wyllie (1980) proved that TWO-COMMODITY INTEGRAL

FLOW is NP-complete, even if both demands d1 and d2 are unitary.
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Complexity of Multicommodity Integral Flow

Directed case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 2: NP-c
Even if di = 1 ∀i

(Fortune et al., 1980)

Undirected case

k = 1: Poly
Even if d1 is arbitrary

(Edmonds and Karp, 1972)

Fixed k ≥ 1: Poly
If di is fixed ∀i
(Roberson and
Seymour, 1995)

Fixed k ≥ 2: NP-c
d1 and d2 are both

arbitrarily large
(Even et al., 1976)

Fixed k ≥ 2: Open
if di is fixed ∀i 6= k and

only dk is arbitrarily large
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SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: An undirected graph G, two commodities {s1, t1} and {s2, t2}, where s1, t1,
s2 and t2 are vertices of G, and two demands d1, d2 ∈ Z+.

Question: Are there two flow functions f1, f2 : {−→uv ,−→vu | uv ∈ E(G)} → Z+
0 such that

1 for each i ∈ {1, 2} and each edge uv ∈ E(G),

fi (
−→uv) = 0 or fi (

−→vu) = 0;

2 for each i ∈ {1, 2} and each vertex v ∈ V (G) \ {si , ti}, the flow
function fi is conserved at v , i.e.∑

u∈NG(v)

fi (
−→uv) =

∑
u∈NG(v)

fi (
−→vu);

3 for each i ∈ {1, 2}, the net flow from si is at least di , i.e.∑
v∈NG(si )

(fi (
−→si v)− fi (

−→vsi )) ≥ di ;

4 for each edge uv ∈ E(G), the total flow through uv is at most 1, i.e.

max {f1(
−→uv), f1(

−→vu)} + max {f2(
−→uv), f2(

−→vu)} ≤ 1?
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NP-completeness of SIMPLE U2CIF with a unitary demand

SIMPLE U2CIF remains NP-complete when the demand of one commodity is
unitary.

Polynomial-time reduction from 3-SAT:

I = (X , C) 7−→ g(I) = (G, {s1, t1}, {s2, t2}, d1, d2)

Define d1 = 1 and d2 = 5m, where m = |C|.

For each variable xi ∈ X , create the gadget Hi :

pi : number of occurrences of xi qi : number of occurrences of x i
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NP-completeness of SIMPLE U2CIF with a Unitary Demand

Connect the variable gadgets in series:

Add the edges s1vs
1 and v t

nt1 .
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NP-completeness of SIMPLE U2CIF with a unitary demand

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the positive literal xi ;

Add the edges uj
ιv2`−1

i and v2`
i w j

ι if the j-th literal in Cι corresponds to the `-th
occurrence of the negative literal x i .
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NP-completeness of SIMPLE U2CIF with a Unitary Demand

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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NP-completeness of SIMPLE U2CIF with a Unitary Demand

Lemma

If g(I) is a YES instance of SIMPLE U2CIF, then the first commodity flow only uses
edges whose endpoints belong to {s1, t1} ∪ V (H1) ∪ · · · ∪ V (Hn).
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An example

I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

α(x1) = true α(x2) = true α(x3) = false
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Disjoint Paths

SIMPLE MULTICOMMODITY INTEGRAL FLOW and
k -EDGE-DISJOINT PATHS are polynomially equivalent.

SIMPLE U2CIF with a unitary demand coincides with
1 + d -EDGE-DISJOINT PATHS.

Corollary

1 + d -EDGE-DISJOINT PATHS is NP-complete.

By taking the line graph, 1 + d -VERTEX-DISJOINT PATHS is also NP-complete.
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STRICT TERMINAL CONNECTION PROBLEM
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Strict Terminal Connection Problem

A strict connection tree of G for W ⊆ V (G) is a tree
subgraph T of G such that leaves(T ) = W .

W → terminals;

V (T ) \W with degree = 2 in T → linkers;

V (T ) \W with degree ≥ 3 in T → routers.

STRICT TERMINAL CONNECTION problem (S-TCP)
Input: G, W ⊆ V (G) and `, r ∈ Z+

0
Question: Is there a strict connection tree T of G for W s.t. |L(T )| ≤ ` and |R(T )| ≤ r?

Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.
Conexão de terminais com número restrito de roteadores e elos
Proccedings of XLVI Simpósio Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.
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Complexity of S-TCP

Solvable in time nO(`+r) (Dourado et al., 2014).

W [2]-hard when parameterized by r even if ` ≥ 0 is constant (Melo et al., 2020).

NP-complete even if ` ≥ 0 is constant and ∆(G) = 4 (Melo et al., 2020).

Solvable in time 2O(` log n) when ∆(G) = 3 but assuming ETH there is no
2o(`+n)-time algorithm even if ∆(G) = 3 (Melo et al., 2020).

FPT when parameterized by `, r ,∆(G) but No-poly Kernel
(Dourado et al., 2014; Melo et al., 2020).

Polynomial-time solvable when r ∈ {0, 1} (Melo et al., 2017)

Turing reduction to MIN-SUM st -VDP.

Open problem

Is there an nO(r)-time algorithm for S-TCP?
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S-TCP fixed r ≥ 2: Combination of two problems

PROBLEM I. Connecting the terminals to
the routers.

Turing reducible to MIN-SUM st -VDP.

Polynomial-time solvable even for r
arbitrarily large.

PROBLEM II. Connecting the routers to
one another.

Polynomial-time reducible to S-TCP.

For r ≤ 3, polynomial-time solvable by a
Turing reduction to MIN-SUM st -VDP.

For fixed r ≥ 4, the complexity is
unsettled.

Polynomial-time reducible to SHORTEST

K -CYCLE, whose complexity for fixed |K |
is a long-standing open question.
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Some variants of S-TCP

CONSTRAINED ROUTER SET

Turing reduction from S-TCP.

CONSTRAINED TERMINAL PARTITION

NP-complete for each r ≥ 2

Polynomial-time reduction from 1 + d-VDP.

CONSTRAINED ROUTER TOPOLOGY

NP-complete for each r ≥ 3

Polynomial-time reduction from 1 + d-VDP.

CONNECTED ROUTER SUBGRAPH

Polynomial-time solvable for constant r ≥ 2

Turing reduction from MIN-SUM st -VDP.
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Relationship: Disjoint paths and S-TCP

CONNECTED ROUTER

SUBGRAPH fixed |R|
MIN-SUM st -VDP
(Suurballe, 1974)

CONNECTED ROUTER

SUBGRAPH (Melo,
2020)

Problem (I)

CONSTRAINED

TERMINAL PARTITION

fixed r

SHORTEST K -CYLE

fixed |K |
Problem (II) |R| ≤ 3

CONSTRAINED

ROUTER TOPOLOGY

fixed r

Problem (II) fixed |R|

CONSTRAINED

ROUTER TOPOLOGY

r = 2

CONSTRAINED

ROUTER SET |R| = 2
CONSTRAINED

ROUTER SET fixed |R| S-TCP r = 1

1 + d VDP MIN-SUM 1 + d VDP S-TCP r = 2 S-TCP fixed r

S-TCP fixed r, |W|
No linker restriction

S-TCP fixed r, |W| MIN-SUM VDP fixed k

VERTEX DISJOINT

PATHS fixed k
(Robertson and
Seymour, 1995)

(Melo, 2016)
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Open problems

Are 1 + d -EDGE-DISJOINT PATHS and 1 + d -VERTEX-DISJOINT PATHS on planar
graphs polynomial-time solvable?

Naves, G. and Sebő, A.
Multiflow feasibility: An annotated tableau
Research Trends in Combinatorial Optimization, 2009, 261–283.

Is MIN-SUM VERTEX-DISJOINT PATHS polynomial-time solvable for fixed k ≥ 2?

Is S-TCP parameterized by r in XP?

Is S-TCP parameterized by |W | in FPT (or in XP)?
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Thank you for your attention!
(https://doi.org/10.1002/net.21976)

Alexsander A. de Melo
aamelo@cos.ufrj.br
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